Spaces:
Running
Running
import gradio as gr | |
import requests | |
API_URL = "https://rahul7star-FramePack-F1-DiffusionForce.hf.space/api/generate/" | |
HEALTH_API_URL = "https://rahul7star-FramePack-F1-DiffusionForce.hf.space/api/healthcheck" | |
def check_health(): | |
try: | |
print("incoming app") | |
response = requests.get(HEALTH_API_URL) | |
if response.status_code == 200: | |
return f"✅ API Rahul is healthy: {response.json()}" | |
else: | |
return f"❌ API Rahul Error: {response.status_code} - {response.text}" | |
except Exception as e: | |
return f"❌ Exception Rahul occurred: {str(e)}" | |
def call_framepack_api( | |
input_image, | |
prompt, | |
t2v, | |
n_prompt, | |
seed, | |
total_second_length, | |
latent_window_size, | |
steps, | |
cfg, | |
gs, | |
rs, | |
gpu_memory_preservation, | |
use_teacache, | |
mp4_crf, | |
lora_file, | |
lora_multiplier, | |
fp8_optimization, | |
): | |
files = {} | |
data = { | |
"prompt": prompt, | |
"t2v": str(t2v).lower(), | |
"n_prompt": n_prompt, | |
"seed": int(seed), | |
"total_second_length": float(total_second_length), | |
"latent_window_size": int(latent_window_size), | |
"steps": int(steps), | |
"cfg": float(cfg), | |
"gs": float(gs), | |
"rs": float(rs), | |
"gpu_memory_preservation": float(gpu_memory_preservation), | |
"use_teacache": str(use_teacache).lower(), | |
"mp4_crf": int(mp4_crf), | |
"lora_multiplier": float(lora_multiplier), | |
"fp8_optimization": str(fp8_optimization).lower(), | |
} | |
if input_image: | |
files["input_image"] = ("input.png", input_image, "image/png") | |
if lora_file: | |
files["lora_file"] = (lora_file.name, lora_file, "application/octet-stream") | |
# Prepare log string for display | |
log_str = f"Calling API at: {API_URL}\n" | |
log_str += f"Payload data:\n{data}\n" | |
log_str += f"Files sent: {list(files.keys())}\n" | |
try: | |
response = requests.post(API_URL, data=data, files=files) | |
log_str += f"Response status: {response.status_code}\n" | |
if response.status_code == 200: | |
result = response.json() | |
video_url = result.get("video_url") | |
preview_url = result.get("preview_image_url") | |
log_str += f"Response JSON:\n{result}\n" | |
return video_url, preview_url, log_str | |
else: | |
log_str += f"API Error: {response.status_code} - {response.text}\n" | |
return None, None, log_str | |
except Exception as e: | |
log_str += f"Exception: {str(e)}\n" | |
return None, None, log_str | |
with gr.Blocks() as demo: | |
gr.Markdown("# FramePack API Client with Full Options") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.File(label="Input Image (PNG/JPG) — optional", file_types=[".png", ".jpg", ".jpeg"]) | |
lora_file = gr.File(label="LoRA File (optional)", file_types=[".safetensors", ".pt", ".bin"]) | |
prompt = gr.Textbox(label="Prompt") | |
n_prompt = gr.Textbox(label="Negative Prompt (optional)", value="") | |
t2v = gr.Checkbox(label="Text-to-Video", value=True) | |
seed = gr.Number(label="Seed", value=31337, precision=0) | |
total_second_length = gr.Slider(label="Video Length (seconds)", minimum=1, maximum=120, value=5, step=0.1) | |
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1) | |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01) | |
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01) | |
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01) | |
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB)", minimum=6, maximum=128, value=6, step=0.1) | |
use_teacache = gr.Checkbox(label="Use TeaCache", value=True) | |
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1) | |
lora_multiplier = gr.Slider(label="LoRA Multiplier", minimum=0.0, maximum=1.0, value=0.8, step=0.1) | |
fp8_optimization = gr.Checkbox(label="FP8 Optimization", value=False) | |
generate_btn = gr.Button("Generate") | |
health_btn = gr.Button("Check API Health") | |
health_output = gr.Textbox(label="Health Check Result") | |
health_btn.click(fn=check_health, inputs=[], outputs=[health_output]) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video", autoplay=True) | |
preview_output = gr.Image(label="Preview Image") | |
api_response = gr.Textbox(label="API JSON Response", lines=10) | |
generate_btn.click( | |
fn=call_framepack_api, | |
inputs=[ | |
input_image, | |
prompt, | |
t2v, | |
n_prompt, | |
seed, | |
total_second_length, | |
latent_window_size, | |
steps, | |
cfg, | |
gs, | |
rs, | |
gpu_memory_preservation, | |
use_teacache, | |
mp4_crf, | |
lora_file, | |
lora_multiplier, | |
fp8_optimization, | |
], | |
outputs=[video_output, preview_output, api_response], | |
) | |
demo.launch() | |