import spaces import torch from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline from diffusers.models.transformers.transformer_wan import WanTransformer3DModel from diffusers.utils.export_utils import export_to_video import gradio as gr import tempfile import numpy as np from PIL import Image import random import gc import copy from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from torchao.quantization import Int8WeightOnlyConfig import aoti from diffusers import ( FlowMatchEulerDiscreteScheduler, SASolverScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, UniPCMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, ) MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers" MAX_DIM = 832 MIN_DIM = 480 SQUARE_DIM = 640 MULTIPLE_OF = 16 MAX_SEED = np.iinfo(np.int32).max FIXED_FPS = 16 MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 160 MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1) MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1) SCHEDULER_MAP = { "FlowMatchEulerDiscrete": FlowMatchEulerDiscreteScheduler, "SASolver": SASolverScheduler, "DEISMultistep": DEISMultistepScheduler, "DPMSolverMultistepInverse": DPMSolverMultistepInverseScheduler, "UniPCMultistep": UniPCMultistepScheduler, "DPMSolverMultistep": DPMSolverMultistepScheduler, "DPMSolverSinglestep": DPMSolverSinglestepScheduler, } pipe = WanImageToVideoPipeline.from_pretrained( "TestOrganizationPleaseIgnore/WAMU_v1_WAN2.2_I2V_LIGHTNING", torch_dtype=torch.bfloat16, ).to('cuda') original_scheduler = copy.deepcopy(pipe.scheduler) print(original_scheduler) quantize_(pipe.text_encoder, Int8WeightOnlyConfig()) quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig()) quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig()) aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da') aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da') default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" def resize_image(image: Image.Image) -> Image.Image: """ Resizes an image to fit within the model's constraints, preserving aspect ratio as much as possible. """ width, height = image.size # Handle square case if width == height: return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS) aspect_ratio = width / height MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM image_to_resize = image if aspect_ratio > MAX_ASPECT_RATIO: # Very wide image -> crop width to fit 832x480 aspect ratio target_w, target_h = MAX_DIM, MIN_DIM crop_width = int(round(height * MAX_ASPECT_RATIO)) left = (width - crop_width) // 2 image_to_resize = image.crop((left, 0, left + crop_width, height)) elif aspect_ratio < MIN_ASPECT_RATIO: # Very tall image -> crop height to fit 480x832 aspect ratio target_w, target_h = MIN_DIM, MAX_DIM crop_height = int(round(width / MIN_ASPECT_RATIO)) top = (height - crop_height) // 2 image_to_resize = image.crop((0, top, width, top + crop_height)) else: if width > height: # Landscape target_w = MAX_DIM target_h = int(round(target_w / aspect_ratio)) else: # Portrait target_h = MAX_DIM target_w = int(round(target_h * aspect_ratio)) final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF final_w = max(MIN_DIM, min(MAX_DIM, final_w)) final_h = max(MIN_DIM, min(MAX_DIM, final_h)) return image_to_resize.resize((final_w, final_h), Image.LANCZOS) def resize_and_crop_to_match(target_image, reference_image): """Resizes and center-crops the target image to match the reference image's dimensions.""" ref_width, ref_height = reference_image.size target_width, target_height = target_image.size scale = max(ref_width / target_width, ref_height / target_height) new_width, new_height = int(target_width * scale), int(target_height * scale) resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS) left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2 return resized.crop((left, top, left + ref_width, top + ref_height)) def get_num_frames(duration_seconds: float): return 1 + int(np.clip( int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL, )) def get_inference_duration( resized_image, processed_last_image, prompt, steps, negative_prompt, num_frames, guidance_scale, guidance_scale_2, current_seed, scheduler_name, flow_shift, progress ): BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624 BASE_STEP_DURATION = 15 width, height = resized_image.size factor = num_frames * width * height / BASE_FRAMES_HEIGHT_WIDTH step_duration = BASE_STEP_DURATION * factor ** 1.5 return 10 + int(steps) * step_duration @spaces.GPU(duration=get_inference_duration) def run_inference( resized_image, processed_last_image, prompt, steps, negative_prompt, num_frames, guidance_scale, guidance_scale_2, current_seed, scheduler_name, flow_shift, progress=gr.Progress(track_tqdm=True), ): scheduler_class = SCHEDULER_MAP.get(scheduler_name) if scheduler_class.__name__ != pipe.scheduler.config._class_name or flow_shift != pipe.scheduler.config.get("flow_shift", "shift"): config = copy.deepcopy(original_scheduler.config) if scheduler_class == FlowMatchEulerDiscreteScheduler: config['shift'] = flow_shift else: config['flow_shift'] = flow_shift pipe.scheduler = scheduler_class.from_config(config) result = pipe( image=resized_image, last_image=processed_last_image, prompt=prompt, negative_prompt=negative_prompt, height=resized_image.height, width=resized_image.width, num_frames=num_frames, guidance_scale=float(guidance_scale), guidance_scale_2=float(guidance_scale_2), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed), ).frames[0] pipe.scheduler = original_scheduler return result def generate_video( input_image, last_image, prompt, steps=4, negative_prompt=default_negative_prompt, duration_seconds=MAX_DURATION, guidance_scale=1, guidance_scale_2=1, seed=42, randomize_seed=False, quality=5, scheduler="UniPCMultistep", flow_shift=6.0, progress=gr.Progress(track_tqdm=True), ): """ Generate a video from an input image using the Wan 2.2 14B I2V model with Lightning LoRA. This function takes an input image and generates a video animation based on the provided prompt and parameters. It uses an FP8 qunatized Wan 2.2 14B Image-to-Video model in with Lightning LoRA for fast generation in 4-8 steps. Args: input_image (PIL.Image): The input image to animate. Will be resized to target dimensions. last_image (PIL.Image, optional): The optional last image for the video. prompt (str): Text prompt describing the desired animation or motion. steps (int, optional): Number of inference steps. More steps = higher quality but slower. Defaults to 4. Range: 1-30. negative_prompt (str, optional): Negative prompt to avoid unwanted elements. Defaults to default_negative_prompt (contains unwanted visual artifacts). duration_seconds (float, optional): Duration of the generated video in seconds. Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS. guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence. Defaults to 1.0. Range: 0.0-20.0. guidance_scale_2 (float, optional): Controls adherence to the prompt. Higher values = more adherence. Defaults to 1.0. Range: 0.0-20.0. seed (int, optional): Random seed for reproducible results. Defaults to 42. Range: 0 to MAX_SEED (2147483647). randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed. Defaults to False. quality (float, optional): Video output quality. Default is 5. Uses variable bit rate. Highest quality is 10, lowest is 1. scheduler (str, optional): The name of the scheduler to use for inference. Defaults to "UniPCMultistep". flow_shift (float, optional): The flow shift value for compatible schedulers. Defaults to 6.0. progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True). Returns: tuple: A tuple containing: - video_path (str): Path for the video component. - video_path (str): Path for the file download component. Attempt to avoid reconversion in video component. - current_seed (int): The seed used for generation. Raises: gr.Error: If input_image is None (no image uploaded). Note: - Frame count is calculated as duration_seconds * FIXED_FPS (24) - Output dimensions are adjusted to be multiples of MOD_VALUE (32) - The function uses GPU acceleration via the @spaces.GPU decorator - Generation time varies based on steps and duration (see get_duration function) """ if input_image is None: raise gr.Error("Please upload an input image.") num_frames = get_num_frames(duration_seconds) current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) resized_image = resize_image(input_image) processed_last_image = None if last_image: processed_last_image = resize_and_crop_to_match(last_image, resized_image) output_frames_list = run_inference( resized_image, processed_last_image, prompt, steps, negative_prompt, num_frames, guidance_scale, guidance_scale_2, current_seed, scheduler, flow_shift, progress, ) with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name export_to_video(output_frames_list, video_path, fps=FIXED_FPS, quality=quality) return video_path, video_path, current_seed with gr.Blocks() as demo: gr.Markdown("# WAMU - Wan 2.2 I2V (14B)") gr.Markdown("## ℹ️ **A Note on Performance:** This version prioritizes a straightforward setup over maximum speed, so performance may vary.") gr.Markdown("run Wan 2.2 in just 4-8 steps, fp8 quantization & AoT compilation - compatible with 🧨 diffusers and ZeroGPU⚡️") with gr.Row(): with gr.Column(): input_image_component = gr.Image(type="pil", label="Input Image") prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.5, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.") steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="Inference Steps") with gr.Accordion("Advanced Settings", open=False): last_image_component = gr.Image(type="pil", label="Last Image (Optional)") negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, info="Used if any Guidance Scale > 1.", lines=3) quality_slider = gr.Slider(minimum=1, maximum=10, step=1, value=6, label="Video Quality") seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale - high noise stage") guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="Guidance Scale 2 - low noise stage") scheduler_dropdown = gr.Dropdown( label="Scheduler", choices=list(SCHEDULER_MAP.keys()), value="UniPCMultistep", info="Select a custom scheduler." ) flow_shift_slider = gr.Slider(minimum=0.5, maximum=15.0, step=0.1, value=3.0, label="Flow Shift") generate_button = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) file_output = gr.File(label="Download Video") ui_inputs = [ input_image_component, last_image_component, prompt_input, steps_slider, negative_prompt_input, duration_seconds_input, guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox, quality_slider, scheduler_dropdown, flow_shift_slider, ] generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, file_output, seed_input]) if __name__ == "__main__": demo.queue().launch(mcp_server=True)