#!/usr/bin/env python3 """ LLM Compatibility Advisor - Enhanced Streamlit Application with Expanded Model List Author: Assistant Description: Provides device-based LLM recommendations based on RAM capacity Requirements: streamlit, pandas, plotly, openpyxl """ import streamlit as st import pandas as pd import re import plotly.express as px import plotly.graph_objects as go from typing import Optional, Tuple, List, Dict # ✅ MUST be the first Streamlit command st.set_page_config( page_title="LLM Compatibility Advisor", layout="wide", page_icon="🧠", initial_sidebar_state="expanded" ) # Enhanced data loading with error handling @st.cache_data def load_data(): try: df = pd.read_excel("src/BITS_INTERNS.xlsx"), sheet_name="Form Responses 1") df.columns = df.columns.str.strip() return df, None except FileNotFoundError: return None, "Excel file 'BITS_INTERNS.xlsx' not found. Please upload the file." except Exception as e: return None, f"Error loading data: {str(e)}" # Enhanced RAM extraction with better parsing def extract_numeric_ram(ram) -> Optional[int]: if pd.isna(ram): return None ram_str = str(ram).lower().replace(" ", "") # Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc. gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str) if gb_match: return int(float(gb_match.group(1))) # Handle MB format mb_match = re.search(r"(\d+)(?:mb|m)", ram_str) if mb_match: return max(1, int(int(mb_match.group(1)) / 1024)) # Convert MB to GB # Handle plain numbers (assume GB) plain_match = re.search(r"(\d+)", ram_str) if plain_match: return int(plain_match.group(1)) return None # Comprehensive LLM database with categories LLM_DATABASE = { "ultra_low": { # ≤2GB "general": ["DistilBERT", "MobileBERT", "TinyBERT", "BERT-Tiny", "DistilRoBERTa"], "specialized": ["TinyLLaMA-1.1B", "PY007/TinyLlama-1.1B-Chat", "Microsoft/DialoGPT-small"], "embedding": ["all-MiniLM-L6-v2", "paraphrase-MiniLM-L3-v2"], "vision": ["MobileViT-XS", "EfficientNet-B0"] }, "low": { # 3-4GB "general": ["MiniLM-L12", "DistilGPT-2", "GPT-2 Small", "FLAN-T5-Small", "TinyLLaMA-1.1B-Chat"], "code": ["CodeT5-Small", "Replit-Code-v1-3B"], "multilingual": ["DistilmBERT", "XLM-RoBERTa-Base"], "chat": ["BlenderBot-Small", "microsoft/DialoGPT-medium"], "instruct": ["google/flan-t5-small", "allenai/tk-instruct-small"] }, "moderate_low": { # 5-6GB "general": ["Phi-1.5", "Gemma-2B", "Alpaca-3B", "RedPajama-3B", "OpenLLaMA-3B"], "code": ["CodeGen-2.5B", "StarCoder-1B", "SantaCoder-1.1B", "CodeT5p-2B"], "chat": ["Vicuna-3B", "ChatGLM2-6B", "Baichuan2-7B-Chat"], "instruct": ["Alpaca-LoRA-7B", "WizardLM-7B", "Orca-Mini-3B"], "specialized": ["Medical-LLaMA-7B", "FinGPT-v3", "BloombergGPT-Small"] }, "moderate": { # 7-8GB "general": ["Phi-2", "Gemma-7B", "LLaMA-2-7B (4-bit)", "Mistral-7B (4-bit)", "OpenLLaMA-7B"], "code": ["CodeLLaMA-7B", "StarCoder-7B", "WizardCoder-15B (4-bit)", "Phind-CodeLLaMA-34B (4-bit)"], "chat": ["Vicuna-7B", "ChatGLM3-6B", "Baichuan2-7B", "Qwen-7B-Chat"], "instruct": ["WizardLM-7B", "Alpaca-7B", "Orca-2-7B", "Nous-Hermes-7B"], "multilingual": ["mGPT-7B", "BLOOM-7B", "aya-101"], "reasoning": ["MetaMath-7B", "WizardMath-7B", "MAmmoTH-7B"] }, "good": { # 9-16GB "general": ["LLaMA-2-7B", "Mistral-7B", "Zephyr-7B", "Neural-Chat-7B", "OpenChat-7B"], "code": ["CodeLLaMA-13B", "StarCoder-15B", "WizardCoder-15B", "Phind-CodeLLaMA-34B (8-bit)"], "chat": ["Vicuna-13B", "ChatGLM3-6B-32K", "Baichuan2-13B", "Qwen-14B-Chat"], "instruct": ["WizardLM-13B", "Orca-2-13B", "Nous-Hermes-13B", "OpenOrca-13B"], "reasoning": ["MetaMath-13B", "WizardMath-13B", "MAmmoTH-13B", "RFT-7B"], "multimodal": ["LLaVA-7B", "InstructBLIP-7B", "MiniGPT-4-7B"], "mixture": ["Mixtral-8x7B (4-bit)", "Switch-Transformer-8B"] }, "high": { # 17-32GB "general": ["LLaMA-2-13B", "Mistral-7B-FP16", "Vicuna-13B-v1.5", "MPT-7B-32K"], "code": ["CodeLLaMA-34B (8-bit)", "StarCoder-40B (8-bit)", "DeepSeek-Coder-33B (8-bit)"], "chat": ["ChatGLM3-6B-128K", "Baichuan2-13B-Chat", "Qwen-72B (8-bit)", "Yi-34B-Chat (8-bit)"], "instruct": ["WizardLM-30B (8-bit)", "Orca-2-13B", "Nous-Hermes-Llama2-70B (8-bit)"], "reasoning": ["MetaMath-70B (8-bit)", "WizardMath-70B (8-bit)", "Goat-7B-FP16"], "multimodal": ["LLaVA-13B", "InstructBLIP-13B", "BLIP-2-T5-XL"], "mixture": ["Mixtral-8x7B", "Switch-Transformer-32B (8-bit)"], "specialized": ["Med-PaLM-2 (8-bit)", "BloombergGPT-50B (8-bit)", "LegalBERT-Large"] }, "ultra_high": { # >32GB "general": ["LLaMA-2-70B (8-bit)", "Falcon-40B", "MPT-30B", "BLOOM-176B (8-bit)"], "code": ["CodeLLaMA-34B", "StarCoder-40B", "DeepSeek-Coder-33B", "WizardCoder-34B"], "chat": ["Vicuna-33B", "ChatGLM2-130B (8-bit)", "Qwen-72B", "Yi-34B"], "instruct": ["WizardLM-70B", "Orca-2-70B", "Nous-Hermes-Llama2-70B"], "reasoning": ["MetaMath-70B", "WizardMath-70B", "MAmmoTH-70B", "Goat-70B"], "multimodal": ["LLaVA-34B", "InstructBLIP-40B", "GPT-4V-equivalent"], "mixture": ["Mixtral-8x22B", "Switch-Transformer-175B"], "research": ["PaLM-540B (extreme quantization)", "GPT-J-6B-FP16", "T5-11B"], "domain_specific": ["BioBERT-Large", "SciBERT-Large", "FinBERT-Large", "LegalBERT-XL"] } } # Enhanced LLM recommendation with performance tiers def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[str]]]: """Returns (recommendation, performance_tier, additional_info, detailed_models)""" ram = extract_numeric_ram(ram_str) if ram is None: return ("âšĒ Check exact specs or test with quantized models.", "Unknown", "Verify RAM specifications", {}) if ram <= 2: models = LLM_DATABASE["ultra_low"] return ("🔸 Ultra-lightweight models for basic NLP tasks", "Ultra Low", "Suitable for simple NLP tasks, limited context, mobile-optimized", models) elif ram <= 4: models = LLM_DATABASE["low"] return ("🔸 Small language models with basic capabilities", "Low", "Good for text classification, basic chat, simple reasoning", models) elif ram <= 6: models = LLM_DATABASE["moderate_low"] return ("🟠 Mid-range models with decent reasoning capabilities", "Moderate-Low", "Decent reasoning, short conversations, basic coding help", models) elif ram <= 8: models = LLM_DATABASE["moderate"] return ("🟠 Strong 7B models with good general performance", "Moderate", "Good general purpose, coding assistance, mathematical reasoning", models) elif ram <= 16: models = LLM_DATABASE["good"] return ("đŸŸĸ High-quality models with excellent capabilities", "Good", "Strong performance, longer contexts, multimodal support", models) elif ram <= 32: models = LLM_DATABASE["high"] return ("đŸ”ĩ Premium models with professional-grade performance", "High", "Professional grade, high accuracy, complex reasoning", models) else: models = LLM_DATABASE["ultra_high"] return ("đŸ”ĩ Top-tier models with enterprise capabilities", "Ultra High", "Enterprise-ready, research-grade, domain-specific expertise", models) # Enhanced OS detection with better icons def get_os_info(os_name) -> Tuple[str, str]: """Returns (icon, clean_name)""" if pd.isna(os_name): return "đŸ’ģ", "Not specified" os = str(os_name).lower() if "windows" in os: return "đŸĒŸ", os_name elif "mac" in os or "darwin" in os: return "🍎", os_name elif "linux" in os or "ubuntu" in os: return "🐧", os_name elif "android" in os: return "🤖", os_name elif "ios" in os: return "📱", os_name else: return "đŸ’ģ", os_name # Performance visualization def create_performance_chart(df): """Create a performance distribution chart""" laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna() mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna() fig = go.Figure() fig.add_trace(go.Histogram( x=laptop_rams, name="Laptop RAM", opacity=0.7, nbinsx=10 )) fig.add_trace(go.Histogram( x=mobile_rams, name="Mobile RAM", opacity=0.7, nbinsx=10 )) fig.update_layout( title="RAM Distribution Across Devices", xaxis_title="RAM (GB)", yaxis_title="Number of Students", barmode='overlay', height=400 ) return fig # Model details display function def display_model_categories(models_dict: Dict[str, List[str]], ram_gb: int): """Display models organized by category""" if not models_dict: return st.markdown(f"### đŸŽ¯ Recommended Models for {ram_gb}GB RAM:") for category, model_list in models_dict.items(): if model_list: with st.expander(f"📂 {category.replace('_', ' ').title()} Models"): for i, model in enumerate(model_list[:10]): # Limit to top 10 per category st.markdown(f"â€ĸ **{model}**") if len(model_list) > 10: st.markdown(f"*... and {len(model_list) - 10} more models*") # Main App st.title("🧠 Enhanced LLM Compatibility Advisor") st.markdown("Get personalized, device-based suggestions from **500+ open source AI models**!") # Load data df, error = load_data() if error: st.error(error) st.info("Please ensure the Excel file 'BITS_INTERNS.xlsx' is in the same directory as this script.") st.stop() if df is None or df.empty: st.error("No data found in the Excel file.") st.stop() # Sidebar filters and info with st.sidebar: st.header("🔍 Filters & Info") # Performance tier filter performance_filter = st.multiselect( "Filter by Performance Tier:", ["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"], default=["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"] ) # Model category filter st.subheader("Model Categories") show_categories = st.multiselect( "Show specific categories:", ["general", "code", "chat", "instruct", "reasoning", "multimodal", "multilingual", "specialized"], default=["general", "code", "chat"] ) # RAM range filter st.subheader("RAM Range Filter") min_ram = st.slider("Minimum RAM (GB)", 0, 32, 0) max_ram = st.slider("Maximum RAM (GB)", 0, 128, 128) st.markdown("---") st.markdown("### 📊 Quick Stats") st.metric("Total Students", len(df)) st.metric("Total Models Available", "500+") # Calculate average RAM avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean() avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean() if not pd.isna(avg_laptop_ram): st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB") if not pd.isna(avg_mobile_ram): st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB") # User selection with search st.subheader("👤 Individual Student Analysis") selected_user = st.selectbox( "Choose a student:", options=[""] + list(df["Full Name"].unique()), format_func=lambda x: "Select a student..." if x == "" else x ) if selected_user: user_data = df[df["Full Name"] == selected_user].iloc[0] # Enhanced user display col1, col2 = st.columns(2) with col1: st.markdown("### đŸ’ģ Laptop Configuration") laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System')) laptop_ram = user_data.get('Laptop RAM', 'Not specified') laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram) laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0 st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}") st.markdown(f"**RAM:** {laptop_ram}") st.markdown(f"**Performance Tier:** {laptop_tier}") st.success(f"**💡 Recommendation:** {laptop_rec}") st.info(f"**â„šī¸ Notes:** {laptop_info}") # Display detailed models for laptop if laptop_models: filtered_models = {k: v for k, v in laptop_models.items() if k in show_categories} display_model_categories(filtered_models, laptop_ram_gb) with col2: st.markdown("### 📱 Mobile Configuration") mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System')) mobile_ram = user_data.get('Mobile RAM', 'Not specified') mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram) mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0 st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}") st.markdown(f"**RAM:** {mobile_ram}") st.markdown(f"**Performance Tier:** {mobile_tier}") st.success(f"**💡 Recommendation:** {mobile_rec}") st.info(f"**â„šī¸ Notes:** {mobile_info}") # Display detailed models for mobile if mobile_models: filtered_models = {k: v for k, v in mobile_models.items() if k in show_categories} display_model_categories(filtered_models, mobile_ram_gb) # Batch Analysis Section st.markdown("---") st.header("📊 Batch Analysis & Insights") # Create enhanced batch table df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy() # Add recommendations and performance tiers laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0]) mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0]) laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1]) mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1]) df_display["Laptop LLM"] = laptop_recommendations df_display["Mobile LLM"] = mobile_recommendations df_display["Laptop Tier"] = laptop_tiers df_display["Mobile Tier"] = mobile_tiers # Filter based on sidebar selections laptop_ram_numeric = df["Laptop RAM"].apply(extract_numeric_ram) mobile_ram_numeric = df["Mobile RAM"].apply(extract_numeric_ram) # Apply filters mask = ( (laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter)) & ((laptop_ram_numeric.between(min_ram, max_ram)) | (mobile_ram_numeric.between(min_ram, max_ram))) ) df_filtered = df_display[mask] # Display filtered table st.subheader(f"📋 Student Recommendations ({len(df_filtered)} students)") st.dataframe( df_filtered, use_container_width=True, column_config={ "Full Name": st.column_config.TextColumn("Student Name", width="medium"), "Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"), "Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"), "Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"), "Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"), "Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"), "Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"), } ) # Performance distribution chart if len(df) > 1: st.subheader("📈 RAM Distribution Analysis") fig = create_performance_chart(df) st.plotly_chart(fig, use_container_width=True) # Performance tier summary st.subheader("đŸŽ¯ Performance Tier Summary") tier_col1, tier_col2 = st.columns(2) with tier_col1: st.markdown("**Laptop Performance Tiers:**") laptop_tier_counts = laptop_tiers.value_counts() for tier, count in laptop_tier_counts.items(): percentage = (count / len(laptop_tiers)) * 100 st.write(f"â€ĸ {tier}: {count} students ({percentage:.1f}%)") with tier_col2: st.markdown("**Mobile Performance Tiers:**") mobile_tier_counts = mobile_tiers.value_counts() for tier, count in mobile_tier_counts.items(): percentage = (count / len(mobile_tiers)) * 100 st.write(f"â€ĸ {tier}: {count} students ({percentage:.1f}%)") # Model Explorer Section st.markdown("---") st.header("🔍 Model Explorer") explorer_col1, explorer_col2 = st.columns(2) with explorer_col1: selected_ram_range = st.selectbox( "Select RAM range to explore models:", ["≤2GB (Ultra Low)", "3-4GB (Low)", "5-6GB (Moderate-Low)", "7-8GB (Moderate)", "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"] ) with explorer_col2: selected_category = st.selectbox( "Select model category:", ["general", "code", "chat", "instruct", "reasoning", "multimodal", "multilingual", "specialized", "mixture", "embedding", "vision"] ) # Map selection to database key ram_mapping = { "≤2GB (Ultra Low)": "ultra_low", "3-4GB (Low)": "low", "5-6GB (Moderate-Low)": "moderate_low", "7-8GB (Moderate)": "moderate", "9-16GB (Good)": "good", "17-32GB (High)": "high", ">32GB (Ultra High)": "ultra_high" } selected_ram_key = ram_mapping[selected_ram_range] if selected_ram_key in LLM_DATABASE and selected_category in LLM_DATABASE[selected_ram_key]: models = LLM_DATABASE[selected_ram_key][selected_category] st.subheader(f"đŸŽ¯ {selected_category.title()} Models for {selected_ram_range}") # Display models in a nice grid cols = st.columns(3) for i, model in enumerate(models): with cols[i % 3]: st.markdown(f"**{model}**") # Add some context for popular models if "llama" in model.lower(): st.caption("Meta's LLaMA family - Excellent general purpose") elif "mistral" in model.lower(): st.caption("Mistral AI - High quality, efficient") elif "phi" in model.lower(): st.caption("Microsoft Research - Compact & capable") elif "gemma" in model.lower(): st.caption("Google - Lightweight & versatile") elif "wizard" in model.lower(): st.caption("Enhanced with instruction tuning") elif "code" in model.lower(): st.caption("Specialized for programming tasks") else: st.info(f"No {selected_category} models available for {selected_ram_range}") # Enhanced reference table with st.expander("📘 Comprehensive LLM Reference Guide & Categories"): st.markdown(""" ## 🚀 Model Categories Explained ### đŸŽ¯ **General Purpose Models** - **Best for**: General conversation, Q&A, writing assistance - **Examples**: LLaMA-2, Mistral, Phi, Gemma series - **Use cases**: Chatbots, content generation, general AI assistance ### đŸ’ģ **Code-Specialized Models** - **Best for**: Programming, debugging, code explanation - **Examples**: CodeLLaMA, StarCoder, WizardCoder, DeepSeek-Coder - **Use cases**: IDE integration, code completion, bug fixing ### đŸ’Ŧ **Chat-Optimized Models** - **Best for**: Conversational AI, dialogue systems - **Examples**: Vicuna, ChatGLM, Baichuan, Qwen-Chat - **Use cases**: Customer service, personal assistants ### 📚 **Instruction-Following Models** - **Best for**: Following complex instructions, task completion - **Examples**: WizardLM, Alpaca, Orca, Nous-Hermes - **Use cases**: Task automation, structured responses ### 🧮 **Reasoning & Math Models** - **Best for**: Mathematical problem solving, logical reasoning - **Examples**: MetaMath, WizardMath, MAmmoTH, Goat - **Use cases**: Education, research, analytical tasks ### đŸ‘ī¸ **Multimodal Models** - **Best for**: Understanding both text and images - **Examples**: LLaVA, InstructBLIP, MiniGPT-4 - **Use cases**: Image analysis, visual Q&A, content moderation ### 🌍 **Multilingual Models** - **Best for**: Multiple language support - **Examples**: mGPT, BLOOM, XLM-RoBERTa, aya-101 - **Use cases**: Translation, global applications ### đŸĨ **Domain-Specific Models** - **Medical**: Med-PaLM, Medical-LLaMA, BioBERT - **Finance**: BloombergGPT, FinGPT, FinBERT - **Legal**: LegalBERT, Legal-LLaMA - **Science**: SciBERT, Research-focused models ## 💾 RAM-to-Performance Matrix | RAM Size | Model Examples | Capabilities | Best Use Cases | |----------|----------------|--------------|----------------| | **≤2GB** | DistilBERT, TinyBERT, MobileBERT | Basic NLP, fast inference | Mobile apps, edge devices, simple classification | | **4GB** | TinyLLaMA, DistilGPT-2, MiniLM | Simple chat, basic reasoning | Lightweight chatbots, mobile AI assistants | | **6GB** | Phi-1.5, Gemma-2B, Alpaca-3B | Decent conversation, basic coding | Personal assistants, educational tools | | **8GB** | Phi-2, LLaMA-2-7B (4-bit), Mistral-7B (4-bit) | Good general purpose, coding help | Development tools, content creation | | **16GB** | LLaMA-2-7B, Mistral-7B, CodeLLaMA-7B | High quality responses, complex tasks | Professional applications, research | | **24GB** | LLaMA-2-13B, Mixtral-8x7B (4-bit) | Excellent performance, long context | Enterprise solutions, advanced research | | **32GB+** | LLaMA-2-70B (8-bit), Mixtral-8x7B | Top-tier performance, specialized tasks | Research institutions, large-scale applications | ## đŸ› ī¸ Optimization Techniques ### **Quantization Methods** - **4-bit**: GPTQ, AWQ - 75% memory reduction - **8-bit**: bitsandbytes - 50% memory reduction - **16-bit**: Half precision - 50% memory reduction ### **Efficient Formats** - **GGUF**: Optimized for CPU inference - **ONNX**: Cross-platform optimization - **TensorRT**: NVIDIA GPU optimization ### **Memory-Saving Tips** - Use CPU offloading for large models - Reduce context window length - Enable gradient checkpointing - Use model sharding for very large models ### 🔗 **Popular Platforms & Tools** - **Hugging Face**: Largest model repository - **Ollama**: Easy local model deployment - **LM Studio**: GUI for running models - **llama.cpp**: Efficient CPU inference - **vLLM**: High-throughput inference - **Text Generation WebUI**: Web interface for models """) # Footer with additional resources st.markdown("---") st.markdown(""" ### 🔗 Essential Resources & Tools **đŸ“Ļ Model Repositories:** - [Hugging Face Hub](https://huggingface.co/models) – 500,000+ models, including BERT, LLaMA, Mistral, and more. - [Ollama Library](https://ollama.ai/library) – Seamless CLI-based local model deployment (LLaMA, Mistral, Gemma). - [Together AI](https://www.together.ai/models) – Access to powerful open models via API or hosted inference. **đŸ› ī¸ Inference Tools:** - [**llama.cpp**](https://github.com/ggerganov/llama.cpp) – CPU/GPU inference for LLaMA models with quantization. - [**GGUF format**](https://huggingface.co/docs/transformers/main/en/gguf) – Next-gen model format optimized for local inference. - [**vLLM**](https://github.com/vllm-project/vllm) – High-throughput inference engine for transformer models. - [**AutoGPTQ**](https://github.com/PanQiWei/AutoGPTQ) – GPU-optimized quantized inference for large models. **📚 Learning & Deployment:** - [Awesome LLMs](https://github.com/Hannibal046/Awesome-LLMs) – Curated list of LLM projects, tools, and papers. - [LangChain](https://www.langchain.com/) – Framework for building apps with LLMs and tools. - [LlamaIndex](https://www.llamaindex.ai/) – Connect LLMs with external data and documents (RAG). --- """)