Update src/streamlit_app.py
Browse files- src/streamlit_app.py +1 -26
src/streamlit_app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
#!/usr/bin/env python3
|
3 |
"""
|
4 |
LLM Compatibility Advisor - Streamlined with Download Sizes
|
@@ -224,26 +223,6 @@ def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[Dict]]]:
|
|
224 |
"Research grade, maximum performance, domain expertise",
|
225 |
models)
|
226 |
|
227 |
-
# Enhanced OS detection with better icons
|
228 |
-
def get_os_info(os_name) -> Tuple[str, str]:
|
229 |
-
"""Returns (icon, clean_name)"""
|
230 |
-
if pd.isna(os_name):
|
231 |
-
return "π»", "Not specified"
|
232 |
-
|
233 |
-
os = str(os_name).lower()
|
234 |
-
if "windows" in os:
|
235 |
-
return "πͺ", os_name
|
236 |
-
elif "mac" in os or "darwin" in os:
|
237 |
-
return "π", os_name
|
238 |
-
elif "linux" in os or "ubuntu" in os:
|
239 |
-
return "π§", os_name
|
240 |
-
elif "android" in os:
|
241 |
-
return "π€", os_name
|
242 |
-
elif "ios" in os:
|
243 |
-
return "π±", os_name
|
244 |
-
else:
|
245 |
-
return "π»", os_name
|
246 |
-
|
247 |
# Performance visualization
|
248 |
def create_performance_chart(df):
|
249 |
"""Create a performance distribution chart"""
|
@@ -361,12 +340,10 @@ if selected_user:
|
|
361 |
|
362 |
with col1:
|
363 |
st.markdown("### π» Laptop Configuration")
|
364 |
-
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
|
365 |
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
|
366 |
laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
|
367 |
laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
|
368 |
|
369 |
-
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
|
370 |
st.markdown(f"**RAM:** {laptop_ram}")
|
371 |
st.markdown(f"**Performance Tier:** {laptop_tier}")
|
372 |
|
@@ -380,12 +357,10 @@ if selected_user:
|
|
380 |
|
381 |
with col2:
|
382 |
st.markdown("### π± Mobile Configuration")
|
383 |
-
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
|
384 |
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
|
385 |
mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
|
386 |
mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
|
387 |
|
388 |
-
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
|
389 |
st.markdown(f"**RAM:** {mobile_ram}")
|
390 |
st.markdown(f"**Performance Tier:** {mobile_tier}")
|
391 |
|
@@ -415,7 +390,7 @@ df_display["Mobile LLM"] = mobile_recommendations
|
|
415 |
df_display["Laptop Tier"] = laptop_tiers
|
416 |
df_display["Mobile Tier"] = mobile_tiers
|
417 |
|
418 |
-
# Filter based on sidebar selections
|
419 |
mask = (laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter))
|
420 |
|
421 |
df_filtered = df_display[mask]
|
|
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
LLM Compatibility Advisor - Streamlined with Download Sizes
|
|
|
223 |
"Research grade, maximum performance, domain expertise",
|
224 |
models)
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
# Performance visualization
|
227 |
def create_performance_chart(df):
|
228 |
"""Create a performance distribution chart"""
|
|
|
340 |
|
341 |
with col1:
|
342 |
st.markdown("### π» Laptop Configuration")
|
|
|
343 |
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
|
344 |
laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
|
345 |
laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
|
346 |
|
|
|
347 |
st.markdown(f"**RAM:** {laptop_ram}")
|
348 |
st.markdown(f"**Performance Tier:** {laptop_tier}")
|
349 |
|
|
|
357 |
|
358 |
with col2:
|
359 |
st.markdown("### π± Mobile Configuration")
|
|
|
360 |
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
|
361 |
mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
|
362 |
mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
|
363 |
|
|
|
364 |
st.markdown(f"**RAM:** {mobile_ram}")
|
365 |
st.markdown(f"**Performance Tier:** {mobile_tier}")
|
366 |
|
|
|
390 |
df_display["Laptop Tier"] = laptop_tiers
|
391 |
df_display["Mobile Tier"] = mobile_tiers
|
392 |
|
393 |
+
# Filter based on sidebar selections
|
394 |
mask = (laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter))
|
395 |
|
396 |
df_filtered = df_display[mask]
|