File size: 27,924 Bytes
2d54c9a
 
7167581
4f33339
7167581
55f5c3c
 
b8d4ff0
2d54c9a
 
585ce61
2d54c9a
7167581
2d54c9a
7167581
2d54c9a
7167581
2d54c9a
 
 
7167581
 
2d54c9a
650f36a
7167581
9ee06e8
b8d4ff0
3e6e275
 
 
 
dcec7ff
3e6e275
 
 
 
 
 
 
 
 
 
c0d9056
 
 
 
 
 
dcec7ff
7167581
2d54c9a
 
5bef9cc
7167581
2d54c9a
7167581
 
2d54c9a
 
 
7167581
 
2d54c9a
 
7167581
 
 
2d54c9a
 
 
7167581
2d54c9a
 
7167581
2d54c9a
7167581
2d54c9a
 
7167581
2d54c9a
 
 
7167581
 
2d54c9a
 
7167581
2d54c9a
 
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
7167581
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
 
7167581
 
2d54c9a
 
7167581
 
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
 
7167581
2d54c9a
 
 
7167581
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
 
7167581
2d54c9a
 
 
7167581
 
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
 
7167581
 
 
 
 
 
 
 
 
 
2d54c9a
5bef9cc
2d54c9a
 
7167581
 
 
2d54c9a
7167581
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
2d54c9a
7167581
2d54c9a
7167581
 
2d54c9a
 
 
7167581
2d54c9a
 
 
 
 
 
 
 
7167581
2d54c9a
7167581
2d54c9a
7167581
2d54c9a
 
7167581
2d54c9a
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
2d54c9a
7167581
2d54c9a
 
5dfa3bc
7167581
2d54c9a
 
7167581
 
 
2d54c9a
 
7167581
 
 
2d54c9a
 
7167581
 
 
 
 
 
 
 
 
 
c0d9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585ce61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
2d54c9a
7167581
2d54c9a
c0d9056
2d54c9a
7167581
c0d9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
585ce61
 
 
 
7167581
2d54c9a
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
 
 
2d54c9a
 
7167581
2d54c9a
 
 
 
 
585ce61
2d54c9a
585ce61
 
 
 
7167581
2d54c9a
585ce61
 
2d54c9a
 
585ce61
 
 
 
 
7167581
585ce61
 
7167581
585ce61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
585ce61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
 
2d54c9a
7167581
 
 
2d54c9a
 
7167581
 
 
 
 
 
 
 
 
 
 
c0d9056
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
2d54c9a
 
 
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
b8d4ff0
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
 
7167581
 
2d54c9a
dcec7ff
2d54c9a
 
 
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bef9cc
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585ce61
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcec7ff
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
#!/usr/bin/env python3
"""
LLM Compatibility Advisor - Streamlined with Download Sizes
Author: Assistant
Description: Provides device-based LLM recommendations with popular models and download sizes
Requirements: streamlit, pandas, plotly, openpyxl
"""

import streamlit as st
import pandas as pd
import numpy as np
import re
import plotly.express as px
import plotly.graph_objects as go
from typing import Optional, Tuple, List, Dict

# โœ… MUST be the first Streamlit command
st.set_page_config(
    page_title="LLM Compatibility Advisor", 
    layout="wide",
    page_icon="๐Ÿง ",
    initial_sidebar_state="expanded"
)

# Enhanced data loading with error handling
@st.cache_data
def load_data():
    paths = [
        "src/BITS_INTERNS.xlsx",
        "src/Summer of AI - ICFAI  (Responses) (3).xlsx"
    ]

    combined_df = pd.DataFrame()
    for path in paths:
        try:
            df = pd.read_excel(path, sheet_name="Form Responses 1")
            df.columns = df.columns.str.strip()
            combined_df = pd.concat([combined_df, df], ignore_index=True)
        except FileNotFoundError:
            return None, f"Excel file '{path}' not found. Please upload the file."
        except Exception as e:
            return None, f"Error loading '{path}': {str(e)}"
    
    # Return success case - this was missing!
    if combined_df.empty:
        return None, "No data found in Excel files."
    else:
        return combined_df, None

# Enhanced RAM extraction with better parsing
def extract_numeric_ram(ram) -> Optional[int]:
    if pd.isna(ram):
        return None
    
    ram_str = str(ram).lower().replace(" ", "")
    
    # Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc.
    gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
    if gb_match:
        return int(float(gb_match.group(1)))
    
    # Handle MB format
    mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
    if mb_match:
        return max(1, int(int(mb_match.group(1)) / 1024))  # Convert MB to GB
    
    # Handle plain numbers (assume GB)
    plain_match = re.search(r"(\d+)", ram_str)
    if plain_match:
        return int(plain_match.group(1))
    
    return None

# Streamlined LLM database with popular models and download sizes
LLM_DATABASE = {
    "ultra_low": {  # โ‰ค2GB
        "general": [
            {"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model"},
            {"name": "DistilBERT-base", "size": "268MB", "description": "Efficient BERT variant"},
            {"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings"}
        ],
        "code": [
            {"name": "CodeT5-small", "size": "242MB", "description": "Code generation"},
            {"name": "Replit-code-v1-3B", "size": "1.2GB", "description": "Code completion"}
        ]
    },
    "low": {  # 3-4GB
        "general": [
            {"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model"},
            {"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model"},
            {"name": "OpenLLaMA-3B", "size": "2.1GB", "description": "Open source LLaMA"}
        ],
        "code": [
            {"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model"},
            {"name": "StarCoder-1B", "size": "1.1GB", "description": "BigCode project"}
        ],
        "chat": [
            {"name": "Alpaca-3B", "size": "2.0GB", "description": "Stanford's instruction model"},
            {"name": "Vicuna-3B", "size": "2.1GB", "description": "ChatGPT-style training"}
        ]
    },
    "moderate_low": {  # 5-6GB
        "general": [
            {"name": "Phi-2", "size": "5.2GB", "description": "Microsoft's 2.7B model"},
            {"name": "Gemma-7B-it", "size": "4.2GB", "description": "Google instruction tuned"},
            {"name": "Mistral-7B-v0.1", "size": "4.1GB", "description": "Mistral AI base model"}
        ],
        "code": [
            {"name": "CodeLlama-7B", "size": "3.8GB", "description": "Meta's code specialist"},
            {"name": "StarCoder-7B", "size": "4.0GB", "description": "Code generation expert"}
        ],
        "chat": [
            {"name": "Zephyr-7B-beta", "size": "4.2GB", "description": "HuggingFace chat model"},
            {"name": "Neural-Chat-7B", "size": "4.1GB", "description": "Intel optimized"}
        ]
    },
    "moderate": {  # 7-8GB
        "general": [
            {"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model"},
            {"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct"},
            {"name": "Qwen-7B-Chat", "size": "4.0GB", "description": "Alibaba's multilingual"}
        ],
        "code": [
            {"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama"},
            {"name": "WizardCoder-7B", "size": "4.0GB", "description": "Enhanced coding abilities"},
            {"name": "Phind-CodeLlama-34B-v2", "size": "4.2GB", "description": "4-bit quantized version"}
        ],
        "reasoning": [
            {"name": "WizardMath-7B", "size": "4.0GB", "description": "Mathematical reasoning"},
            {"name": "MetaMath-7B", "size": "3.9GB", "description": "Math problem solving"}
        ]
    },
    "good": {  # 9-16GB
        "general": [
            {"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant"},
            {"name": "Vicuna-13B-v1.5", "size": "7.2GB", "description": "Enhanced Vicuna"},
            {"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model"}
        ],
        "code": [
            {"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model"},
            {"name": "WizardCoder-15B", "size": "8.2GB", "description": "Advanced coding"},
            {"name": "StarCoder-15B", "size": "8.5GB", "description": "Large code model"}
        ],
        "multimodal": [
            {"name": "LLaVA-7B", "size": "7.0GB", "description": "Vision + language"},
            {"name": "MiniGPT-4-7B", "size": "6.8GB", "description": "Multimodal chat"}
        ],
        "reasoning": [
            {"name": "WizardMath-13B", "size": "7.3GB", "description": "Advanced math"},
            {"name": "Orca-2-13B", "size": "7.4GB", "description": "Microsoft reasoning"}
        ]
    },
    "high": {  # 17-32GB
        "general": [
            {"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts"},
            {"name": "Llama-2-70B-Chat", "size": "38.0GB", "description": "8-bit quantized"},
            {"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model"}
        ],
        "code": [
            {"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist"},
            {"name": "DeepSeek-Coder-33B", "size": "18.5GB", "description": "DeepSeek's coder"},
            {"name": "WizardCoder-34B", "size": "19.2GB", "description": "Enterprise coding"}
        ],
        "reasoning": [
            {"name": "WizardMath-70B", "size": "38.5GB", "description": "8-bit quantized math"},
            {"name": "MetaMath-70B", "size": "38.0GB", "description": "8-bit math reasoning"}
        ]
    },
    "ultra_high": {  # >32GB
        "general": [
            {"name": "Llama-2-70B", "size": "130GB", "description": "Full precision"},
            {"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model"},
            {"name": "Qwen-72B", "size": "145GB", "description": "Alibaba's flagship"}
        ],
        "code": [
            {"name": "CodeLlama-34B", "size": "68GB", "description": "Full precision code"},
            {"name": "DeepSeek-Coder-33B", "size": "66GB", "description": "Full precision coding"}
        ],
        "reasoning": [
            {"name": "WizardMath-70B", "size": "130GB", "description": "Full precision math"},
            {"name": "Goat-70B", "size": "132GB", "description": "Arithmetic reasoning"}
        ]
    }
}

# Enhanced LLM recommendation with performance tiers
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[Dict]]]:
    """Returns (recommendation, performance_tier, additional_info, detailed_models)"""
    ram = extract_numeric_ram(ram_str)
    
    if ram is None:
        return ("โšช Check exact specs or test with quantized models.", 
                "Unknown", 
                "Verify RAM specifications",
                {})
    
    if ram <= 2:
        models = LLM_DATABASE["ultra_low"]
        return ("๐Ÿ”ธ Ultra-lightweight models - basic NLP tasks", 
                "Ultra Low", 
                "Mobile-optimized, simple tasks, limited context",
                models)
    elif ram <= 4:
        models = LLM_DATABASE["low"]
        return ("๐Ÿ”ธ Small language models - decent capabilities", 
                "Low", 
                "Basic chat, simple reasoning, text classification",
                models)
    elif ram <= 6:
        models = LLM_DATABASE["moderate_low"]
        return ("๐ŸŸ  Mid-range models - good general performance", 
                "Moderate-Low", 
                "Solid reasoning, coding help, longer conversations",
                models)
    elif ram <= 8:
        models = LLM_DATABASE["moderate"]
        return ("๐ŸŸ  Strong 7B models - excellent capabilities", 
                "Moderate", 
                "Professional use, coding assistance, complex reasoning",
                models)
    elif ram <= 16:
        models = LLM_DATABASE["good"]
        return ("๐ŸŸข High-quality models - premium performance", 
                "Good", 
                "Advanced tasks, multimodal support, research use",
                models)
    elif ram <= 32:
        models = LLM_DATABASE["high"]
        return ("๐Ÿ”ต Premium models - professional grade", 
                "High", 
                "Enterprise ready, complex reasoning, specialized tasks",
                models)
    else:
        models = LLM_DATABASE["ultra_high"]
        return ("๐Ÿ”ต Top-tier models - enterprise capabilities", 
                "Ultra High", 
                "Research grade, maximum performance, domain expertise",
                models)

# Enhanced OS detection with better icons
def get_os_info(os_name) -> Tuple[str, str]:
    """Returns (icon, clean_name)"""
    if pd.isna(os_name):
        return "๐Ÿ’ป", "Not specified"
    
    os = str(os_name).lower()
    if "windows" in os:
        return "๐ŸชŸ", os_name
    elif "mac" in os or "darwin" in os:
        return "๐ŸŽ", os_name
    elif "linux" in os or "ubuntu" in os:
        return "๐Ÿง", os_name
    elif "android" in os:
        return "๐Ÿค–", os_name
    elif "ios" in os:
        return "๐Ÿ“ฑ", os_name
    else:
        return "๐Ÿ’ป", os_name

# Performance visualization
def create_performance_chart(df):
    """Create a performance distribution chart"""
    laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
    mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
    
    fig = go.Figure()
    
    fig.add_trace(go.Histogram(
        x=laptop_rams,
        name="Laptop RAM",
        opacity=0.7,
        nbinsx=10
    ))
    
    fig.add_trace(go.Histogram(
        x=mobile_rams,
        name="Mobile RAM",
        opacity=0.7,
        nbinsx=10
    ))
    
    fig.update_layout(
        title="RAM Distribution Across Devices",
        xaxis_title="RAM (GB)",
        yaxis_title="Number of Students",
        barmode='overlay',
        height=400
    )
    
    return fig

# Enhanced model details display function
def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int):
    """Display models organized by category with download sizes"""
    if not models_dict:
        return
    
    st.markdown(f"### ๐ŸŽฏ Recommended Models for {ram_gb}GB RAM:")
    
    for category, model_list in models_dict.items():
        if model_list:
            with st.expander(f"๐Ÿ“‚ {category.replace('_', ' ').title()} Models"):
                for model in model_list[:8]:  # Limit to top 8 per category
                    col1, col2, col3 = st.columns([3, 1, 2])
                    with col1:
                        st.markdown(f"**{model['name']}**")
                    with col2:
                        st.markdown(f"`{model['size']}`")
                    with col3:
                        st.markdown(f"*{model['description']}*")

# Demo data generator for when Excel files are not available
def generate_demo_data():
    """Generate demo data for testing when Excel files are missing"""
    demo_data = {
        "Full Name": [
            "Demo Student 1", "Demo Student 2", "Demo Student 3", "Demo Student 4",
            "Demo Student 5", "Demo Student 6", "Demo Student 7", "Demo Student 8"
        ],
        "Laptop RAM": ["8GB", "16GB", "4GB", "32GB", "6GB", "12GB", "2GB", "24GB"],
        "Mobile RAM": ["4GB", "8GB", "3GB", "12GB", "6GB", "4GB", "2GB", "8GB"],
        "Laptop Operating System": [
            "Windows 11", "macOS Monterey", "Ubuntu 22.04", "Windows 10",
            "macOS Big Sur", "Fedora 36", "Windows 11", "macOS Ventura"
        ],
        "Mobile Operating System": [
            "Android 13", "iOS 16", "Android 12", "iOS 15",
            "Android 14", "iOS 17", "Android 11", "iOS 16"
        ]
    }
    return pd.DataFrame(demo_data)

# Function to safely prepare user options
def prepare_user_options(df):
    """Safely prepare user options for selectbox, handling NaN values and mixed types"""
    try:
        # Get unique names and filter out NaN values
        unique_names = df["Full Name"].dropna().unique()
        
        # Convert to strings and filter out any remaining non-string values
        valid_names = []
        for name in unique_names:
            try:
                str_name = str(name).strip()
                if str_name and str_name.lower() != 'nan':
                    valid_names.append(str_name)
            except:
                continue
        
        # Create options list with proper string concatenation
        options = ["Select a student..."] + sorted(valid_names)
        return options
    except Exception as e:
        st.error(f"Error preparing user options: {e}")
        return ["Select a student..."]

# Main App
st.title("๐Ÿง  LLM Compatibility Advisor")
st.markdown("Get personalized recommendations from **150+ popular open source AI models** with download sizes!")

# Load data with better error handling
df, error = load_data()

if error or df is None or df.empty:
    st.warning("โš ๏ธ Excel files not found. Running with demo data for testing.")
    st.info("๐Ÿ“ To use real data, place 'BITS_INTERNS.xlsx' and 'Summer of AI - ICFAI  (Responses) (3).xlsx' in the 'src/' directory.")
    df = generate_demo_data()
    
    with st.expander("๐Ÿ“‹ Expected Data Format"):
        st.markdown("""
        The app expects Excel files with the following columns:
        - **Full Name**: Student name
        - **Laptop RAM**: RAM specification (e.g., "8GB", "16 GB", "8192MB")
        - **Mobile RAM**: Mobile device RAM
        - **Laptop Operating System**: OS name
        - **Mobile Operating System**: Mobile OS name
        """)

# Verify required columns exist
required_columns = ["Full Name", "Laptop RAM", "Mobile RAM"]
missing_columns = [col for col in required_columns if col not in df.columns]

if missing_columns:
    st.error(f"Missing required columns: {missing_columns}")
    st.info("Please ensure your Excel file contains the required columns.")
    st.stop()

# Clean the dataframe
df = df.copy()
df["Full Name"] = df["Full Name"].astype(str).str.strip()

# Sidebar filters and info
with st.sidebar:
    st.header("๐Ÿ” Filters & Info")
    
    # Performance tier filter
    performance_filter = st.multiselect(
        "Filter by Performance Tier:",
        ["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"],
        default=["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"]
    )
    
    # Model category filter
    st.subheader("Model Categories")
    show_categories = st.multiselect(
        "Show specific categories:",
        ["general", "code", "chat", "reasoning", "multimodal"],
        default=["general", "code", "chat"]
    )
    
    st.markdown("---")
    st.markdown("### ๐Ÿ“Š Quick Stats")
    st.metric("Total Students", len(df))
    st.metric("Popular Models", "150+")
    
    # Calculate average RAM
    avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
    avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
    
    if not pd.isna(avg_laptop_ram):
        st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
    if not pd.isna(avg_mobile_ram):
        st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")

# User selection with search - FIXED VERSION
st.subheader("๐Ÿ‘ค Individual Student Analysis")

# Prepare options safely
user_options = prepare_user_options(df)

selected_user = st.selectbox(
    "Choose a student:",
    options=user_options,
    index=0  # Default to first option ("Select a student...")
)

if selected_user and selected_user != "Select a student...":
    # Find user data with safe lookup
    user_data_mask = df["Full Name"].astype(str).str.strip() == selected_user
    if user_data_mask.any():
        user_data = df[user_data_mask].iloc[0]
        
        # Enhanced user display
        col1, col2 = st.columns(2)
        
        with col1:
            st.markdown("### ๐Ÿ’ป Laptop Configuration")
            laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
            laptop_ram = user_data.get('Laptop RAM', 'Not specified')
            laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
            laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
            
            st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
            st.markdown(f"**RAM:** {laptop_ram}")
            st.markdown(f"**Performance Tier:** {laptop_tier}")
            
            st.success(f"**๐Ÿ’ก Recommendation:** {laptop_rec}")
            st.info(f"**โ„น๏ธ Notes:** {laptop_info}")
            
            # Display detailed models for laptop
            if laptop_models:
                filtered_models = {k: v for k, v in laptop_models.items() if k in show_categories}
                display_model_categories(filtered_models, laptop_ram_gb)
        
        with col2:
            st.markdown("### ๐Ÿ“ฑ Mobile Configuration")
            mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
            mobile_ram = user_data.get('Mobile RAM', 'Not specified')
            mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
            mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
            
            st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
            st.markdown(f"**RAM:** {mobile_ram}")
            st.markdown(f"**Performance Tier:** {mobile_tier}")
            
            st.success(f"**๐Ÿ’ก Recommendation:** {mobile_rec}")
            st.info(f"**โ„น๏ธ Notes:** {mobile_info}")
            
            # Display detailed models for mobile
            if mobile_models:
                filtered_models = {k: v for k, v in mobile_models.items() if k in show_categories}
                display_model_categories(filtered_models, mobile_ram_gb)

# Batch Analysis Section
st.markdown("---")
st.header("๐Ÿ“Š Batch Analysis & Insights")

# Create enhanced batch table
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()

# Add recommendations and performance tiers
laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1])
mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1])

df_display["Laptop LLM"] = laptop_recommendations
df_display["Mobile LLM"] = mobile_recommendations
df_display["Laptop Tier"] = laptop_tiers
df_display["Mobile Tier"] = mobile_tiers

# Filter based on sidebar selections
mask = (laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter))
df_filtered = df_display[mask]

# Display filtered table
st.subheader(f"๐Ÿ“‹ Student Recommendations ({len(df_filtered)} students)")
st.dataframe(
    df_filtered, 
    use_container_width=True,
    column_config={
        "Full Name": st.column_config.TextColumn("Student Name", width="medium"),
        "Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"),
        "Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"),
        "Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"),
        "Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"),
        "Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"),
        "Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"),
    }
)

# Performance distribution chart
if len(df) > 1:
    st.subheader("๐Ÿ“ˆ RAM Distribution Analysis")
    fig = create_performance_chart(df)
    st.plotly_chart(fig, use_container_width=True)

# Performance tier summary
st.subheader("๐ŸŽฏ Performance Tier Summary")
tier_col1, tier_col2 = st.columns(2)

with tier_col1:
    st.markdown("**Laptop Performance Tiers:**")
    laptop_tier_counts = laptop_tiers.value_counts()
    for tier, count in laptop_tier_counts.items():
        percentage = (count / len(laptop_tiers)) * 100
        st.write(f"โ€ข {tier}: {count} students ({percentage:.1f}%)")

with tier_col2:
    st.markdown("**Mobile Performance Tiers:**")
    mobile_tier_counts = mobile_tiers.value_counts()
    for tier, count in mobile_tier_counts.items():
        percentage = (count / len(mobile_tier_counts)) * 100
        st.write(f"โ€ข {tier}: {count} students ({percentage:.1f}%)")

# Model Explorer Section
st.markdown("---")
st.header("๐Ÿ” Popular Model Explorer")

explorer_col1, explorer_col2 = st.columns(2)

with explorer_col1:
    selected_ram_range = st.selectbox(
        "Select RAM range to explore models:",
        ["โ‰ค2GB (Ultra Low)", "3-4GB (Low)", "5-6GB (Moderate-Low)", 
         "7-8GB (Moderate)", "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
    )

with explorer_col2:
    selected_category = st.selectbox(
        "Select model category:",
        ["general", "code", "chat", "reasoning", "multimodal"]
    )

# Map selection to database key
ram_mapping = {
    "โ‰ค2GB (Ultra Low)": "ultra_low",
    "3-4GB (Low)": "low", 
    "5-6GB (Moderate-Low)": "moderate_low",
    "7-8GB (Moderate)": "moderate",
    "9-16GB (Good)": "good",
    "17-32GB (High)": "high",
    ">32GB (Ultra High)": "ultra_high"
}

selected_ram_key = ram_mapping[selected_ram_range]
if selected_ram_key in LLM_DATABASE and selected_category in LLM_DATABASE[selected_ram_key]:
    models = LLM_DATABASE[selected_ram_key][selected_category]
    
    st.subheader(f"๐ŸŽฏ {selected_category.title()} Models for {selected_ram_range}")
    
    # Display models in a detailed table
    for model in models:
        with st.container():
            col1, col2, col3 = st.columns([3, 1, 3])
            with col1:
                st.markdown(f"### {model['name']}")
            with col2:
                st.markdown(f"**{model['size']}**")
                st.caption("Download Size")
            with col3:
                st.markdown(f"*{model['description']}*")
                # Add download suggestion
                if "Llama" in model['name']:
                    st.caption("๐Ÿ”— Available on Hugging Face & Ollama")
                elif "Mistral" in model['name']:
                    st.caption("๐Ÿ”— Available on Hugging Face & Mistral AI")
                elif "Gemma" in model['name']:
                    st.caption("๐Ÿ”— Available on Hugging Face & Google")
                else:
                    st.caption("๐Ÿ”— Available on Hugging Face")
            st.markdown("---")
else:
    st.info(f"No {selected_category} models available for {selected_ram_range}")

# Enhanced reference guide
with st.expander("๐Ÿ“˜ Model Guide & Download Information"):
    st.markdown("""
    ## ๐Ÿš€ Popular Models by Category
    
    ### ๐ŸŽฏ **General Purpose Champions**
    - **Llama-2 Series**: Meta's flagship models (7B, 13B, 70B)
    - **Mistral Series**: Excellent efficiency and performance
    - **Gemma**: Google's efficient models (2B, 7B)
    - **Phi**: Microsoft's compact powerhouses
    
    ### ๐Ÿ’ป **Code Specialists** 
    - **CodeLlama**: Meta's dedicated coding models
    - **StarCoder**: BigCode's programming experts
    - **WizardCoder**: Enhanced coding capabilities
    - **DeepSeek-Coder**: Chinese tech giant's coder
    
    ### ๐Ÿ’ฌ **Chat Optimized**
    - **Vicuna**: UC Berkeley's ChatGPT alternative
    - **Zephyr**: HuggingFace's chat specialist
    - **OpenChat**: High-quality conversation models
    - **Neural-Chat**: Intel-optimized chat models
 
    ### ๐Ÿงฎ **Reasoning Masters**
    - **WizardMath**: Mathematical problem solving
    - **MetaMath**: Advanced arithmetic reasoning
    - **Orca-2**: Microsoft's reasoning specialist
    - **Goat**: Specialized arithmetic model
    
    ### ๐Ÿ‘๏ธ **Multimodal Models**
    - **LLaVA**: Large Language and Vision Assistant
    - **MiniGPT-4**: Multimodal conversational AI
    
    ## ๐Ÿ’พ Download Size Reference
    
    | Model Size | FP16 | 8-bit | 4-bit | Use Case |
    |------------|------|-------|-------|----------|
    | **1-3B** | 2-6GB | 1-3GB | 0.5-1.5GB | Mobile, Edge |
    | **7B** | 13GB | 7GB | 3.5GB | Desktop, Laptop |
    | **13B** | 26GB | 13GB | 7GB | Workstation |
    | **30-34B** | 60GB | 30GB | 15GB | Server, Cloud |
    | **70B** | 140GB | 70GB | 35GB | High-end Server |
    
    ## ๐Ÿ› ๏ธ Where to Download
    
    ### **Primary Sources**
    - **๐Ÿค— Hugging Face**: Largest repository with 400,000+ models
    - **๐Ÿฆ™ Ollama**: Simple CLI tool for local deployment
    - **๐Ÿ“ฆ LM Studio**: User-friendly GUI for model management
    
    ### **Quantized Formats**
    - **GGUF**: Best for CPU inference (llama.cpp)
    - **GPTQ**: GPU-optimized quantization
    - **AWQ**: Advanced weight quantization
    
    ### **Download Tips**
    - Use `git lfs` for large models from Hugging Face
    - Consider bandwidth and storage before downloading
    - Start with 4-bit quantized versions for testing
    - Use `ollama pull model_name` for easiest setup
    
    ## ๐Ÿ”ง Optimization Strategies
    
    ### **Memory Reduction**
    - **4-bit quantization**: 75% memory reduction
    - **8-bit quantization**: 50% memory reduction
    - **CPU offloading**: Use system RAM for overflow
    
    ### **Speed Optimization**
    - **GPU acceleration**: CUDA, ROCm, Metal
    - **Batch processing**: Process multiple requests
    - **Context caching**: Reuse computations
    """)

# Footer with updated resources
st.markdown("---")
st.markdown("""
### ๐Ÿ”— Essential Download & Deployment Tools
**๐Ÿ“ฆ Easy Model Deployment:**
- [**Ollama**](https://ollama.ai/) โ€“ `curl -fsSL https://ollama.ai/install.sh | sh`
- [**LM Studio**](https://lmstudio.ai/) โ€“ Drag-and-drop GUI for running models locally
- [**GPT4All**](https://gpt4all.io/) โ€“ Cross-platform desktop app for local LLMs
**๐Ÿค— Model Repositories:**
- [**Hugging Face Hub**](https://huggingface.co/models) โ€“ Filter by model size, task, and license
- [**TheBloke's Quantizations**](https://huggingface.co/TheBloke) โ€“ Pre-quantized models in GGUF/GPTQ format
- [**Awesome LLM**](https://github.com/Hannibal046/Awesome-LLMs) โ€“ Curated list of models and resources
---
""")