File size: 9,695 Bytes
2d54c9a 3e6e275 4f33339 3e6e275 55f5c3c b8d4ff0 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 650f36a 9ee06e8 b8d4ff0 3e6e275 dcec7ff 3e6e275 dcec7ff 3e6e275 f757005 dcec7ff 574a10f 2d54c9a 5bef9cc dcec7ff 2d54c9a dcec7ff 2d54c9a dcec7ff 2d54c9a 3e6e275 dcec7ff 2d54c9a dcec7ff 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a 5bef9cc 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 5dfa3bc 2d54c9a 3e6e275 2d54c9a 3e6e275 dcec7ff 3e6e275 4f33339 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 650f36a dcec7ff 2d54c9a dcec7ff 2d54c9a dcec7ff 2d54c9a dcec7ff 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 dcec7ff 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 2d54c9a 3e6e275 dcec7ff 3e6e275 b8d4ff0 2d54c9a 3e6e275 2d54c9a dcec7ff 2d54c9a 3e6e275 2d54c9a 3e6e275 5bef9cc 3e6e275 dcec7ff 3e6e275 dcec7ff 3e6e275 dcec7ff 3e6e275 dcec7ff 3e6e275 2d54c9a dcec7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/usr/bin/env python3
"""
LLM Compatibility Advisor - Streamlined Version
Author: Assistant
Description: Provides device-based LLM recommendations with popular models
Requirements: streamlit, pandas, plotly, openpyxl
"""
import streamlit as st
import pandas as pd
import re
import plotly.graph_objects as go
from typing import Optional, Tuple, Dict, List
# Must be first Streamlit command
st.set_page_config(
page_title="LLM Compatibility Advisor",
layout="wide",
page_icon="π§ "
)
@st.cache_data
def load_data():
paths = [
"src/BITS_INTERNS.xlsx",
"src/Summer of AI - ICFAI (Responses) (3).xlsx"
]
combined_df = pd.DataFrame()
for path in paths:
try:
df = pd.read_excel(path, sheet_name="Form Responses 1")
df.columns = df.columns.str.strip()
combined_df = pd.concat([combined_df, df], ignore_index=True)
except FileNotFoundError:
return None, f"Excel file '{path}' not found. Please upload the file."
except Exception as e:
return None, f"Error loading '{path}': {str(e)}"
if combined_df.empty:
return None, "No data found in either file."
return combined_df, None
def extract_numeric_ram(ram) -> Optional[int]:
if pd.isna(ram):
return None
ram_str = str(ram).lower().replace(" ", "")
gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
if gb_match:
return int(float(gb_match.group(1)))
mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
if mb_match:
return max(1, int(int(mb_match.group(1)) / 1024))
plain_match = re.search(r"(\d+)", ram_str)
if plain_match:
return int(plain_match.group(1))
return None
LLM_DATABASE = {
"ultra_low": {
"general": [
{"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model"},
{"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings"}
],
"code": [
{"name": "CodeT5-small", "size": "242MB", "description": "Code generation"}
]
},
"low": {
"general": [
{"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model"},
{"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model"}
],
"code": [
{"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model"}
]
},
"moderate": {
"general": [
{"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model"},
{"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct"}
],
"code": [
{"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama"}
]
},
"good": {
"general": [
{"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant"},
{"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model"}
],
"code": [
{"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model"}
]
},
"high": {
"general": [
{"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts"},
{"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model"}
],
"code": [
{"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist"}
]
},
"ultra_high": {
"general": [
{"name": "Llama-2-70B", "size": "130GB", "description": "Full precision"},
{"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model"}
]
}
}
def recommend_llm(ram_str) -> Tuple[str, str, Dict[str, List[Dict]]]:
ram = extract_numeric_ram(ram_str)
if ram is None:
return "βͺ Check exact specs", "Unknown", {}
if ram <= 2:
return "πΈ Ultra-lightweight models", "Ultra Low", LLM_DATABASE["ultra_low"]
elif ram <= 4:
return "πΈ Small language models", "Low", LLM_DATABASE["low"]
elif ram <= 8:
return "π 7B models - excellent capabilities", "Moderate", LLM_DATABASE["moderate"]
elif ram <= 16:
return "π’ High-quality models", "Good", LLM_DATABASE["good"]
elif ram <= 32:
return "π΅ Premium models", "High", LLM_DATABASE["high"]
else:
return "π΅ Top-tier models", "Ultra High", LLM_DATABASE["ultra_high"]
def get_os_info(os_name) -> Tuple[str, str]:
if pd.isna(os_name):
return "πΌ", "Not specified"
os = str(os_name).lower()
if "windows" in os:
return "πͺ", os_name
elif "mac" in os:
return "π", os_name
elif "linux" in os or "ubuntu" in os:
return "π§", os_name
elif "android" in os:
return "π€", os_name
elif "ios" in os:
return "π±", os_name
else:
return "πΌ", os_name
def create_performance_chart(df):
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
fig = go.Figure()
fig.add_trace(go.Histogram(x=laptop_rams, name="Laptop RAM", opacity=0.7))
fig.add_trace(go.Histogram(x=mobile_rams, name="Mobile RAM", opacity=0.7))
fig.update_layout(
title="RAM Distribution",
xaxis_title="RAM (GB)",
yaxis_title="Students",
barmode='overlay',
height=400
)
return fig
def display_models(models_dict: Dict[str, List[Dict]]):
if not models_dict:
return
for category, model_list in models_dict.items():
if model_list:
st.markdown(f"**{category.title()} Models:**")
for model in model_list[:5]:
st.write(f"β’ {model['name']} ({model['size']}) - {model['description']}")
st.title("π§ LLM Compatibility Advisor")
st.markdown("Get personalized AI model recommendations with download sizes!")
df, error = load_data()
if error:
st.error(error)
st.stop()
if df is None or df.empty:
st.error("No data found.")
st.stop()
with st.sidebar:
st.header("π Quick Stats")
st.metric("Total Students", len(df))
avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
if not pd.isna(avg_laptop_ram):
st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
if not pd.isna(avg_mobile_ram):
st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")
st.subheader("π€ Individual Student Analysis")
student_names = list(df["Full Name"].unique())
student_options = ["Select a student..."] + student_names
selected_name = st.selectbox(
"Choose a student:",
options=student_options,
)
if selected_name != "Select a student...":
selected_user = selected_name
user_data = df[df["Full Name"] == selected_user].iloc[0]
col1, col2 = st.columns(2)
with col1:
st.markdown("### π» Laptop")
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
laptop_rec, _, laptop_models = recommend_llm(laptop_ram)
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
st.markdown(f"**RAM:** {laptop_ram}")
st.success(f"**Recommendation:** {laptop_rec}")
display_models(laptop_models)
with col2:
st.markdown("### π± Mobile")
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
mobile_rec, _, mobile_models = recommend_llm(mobile_ram)
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
st.markdown(f"**RAM:** {mobile_ram}")
st.success(f"**Recommendation:** {mobile_rec}")
display_models(mobile_models)
st.markdown("---")
st.header("π Batch Analysis")
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
df_display["Laptop Recommendation"] = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
df_display["Mobile Recommendation"] = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
st.dataframe(df_display, use_container_width=True)
if len(df) > 1:
st.subheader("π RAM Distribution")
fig = create_performance_chart(df)
st.plotly_chart(fig, use_container_width=True)
st.markdown("---")
st.header("π Model Explorer")
selected_ram_range = st.selectbox(
"Select RAM range:",
["\u22642GB (Ultra Low)", "3-4GB (Low)", "5-8GB (Moderate)",
"9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
)
ram_mapping = {
"β€2GB (Ultra Low)": "ultra_low",
"3-4GB (Low)": "low",
"5-8GB (Moderate)": "moderate",
"9-16GB (Good)": "good",
"17-32GB (High)": "high",
">32GB (Ultra High)": "ultra_high"
}
selected_key = ram_mapping[selected_ram_range]
if selected_key in LLM_DATABASE:
st.subheader(f"Models for {selected_ram_range}")
display_models(LLM_DATABASE[selected_key])
with st.expander("π Quick Reference"):
st.markdown("""
## Popular Models by Category
**General Purpose:**
- Llama-2 Series (7B, 13B, 70B)
- Mistral Series
- Gemma (2B, 7B)
**Code Specialists:**
- CodeLlama
- CodeGen
**Where to Download:**
- π€ Hugging Face Hub
- π§οΈ Ollama
- π¦ LM Studio
""")
st.markdown("---")
st.markdown("*Built for BITS Pilani Interns*")
|