File size: 9,695 Bytes
2d54c9a
 
3e6e275
4f33339
3e6e275
55f5c3c
 
b8d4ff0
2d54c9a
 
 
 
3e6e275
2d54c9a
3e6e275
2d54c9a
 
 
3e6e275
2d54c9a
650f36a
9ee06e8
b8d4ff0
3e6e275
 
 
 
dcec7ff
3e6e275
 
 
 
 
 
 
 
 
 
dcec7ff
3e6e275
 
f757005
dcec7ff
574a10f
2d54c9a
 
5bef9cc
dcec7ff
2d54c9a
dcec7ff
2d54c9a
 
 
dcec7ff
2d54c9a
 
3e6e275
dcec7ff
2d54c9a
 
 
dcec7ff
2d54c9a
 
 
dcec7ff
2d54c9a
 
 
 
 
3e6e275
2d54c9a
 
dcec7ff
2d54c9a
 
3e6e275
2d54c9a
 
3e6e275
2d54c9a
 
dcec7ff
2d54c9a
 
3e6e275
2d54c9a
 
3e6e275
2d54c9a
 
dcec7ff
2d54c9a
 
 
 
 
3e6e275
2d54c9a
 
dcec7ff
2d54c9a
 
 
 
 
3e6e275
2d54c9a
 
dcec7ff
2d54c9a
 
3e6e275
2d54c9a
5bef9cc
2d54c9a
 
3e6e275
2d54c9a
 
3e6e275
2d54c9a
3e6e275
2d54c9a
3e6e275
2d54c9a
3e6e275
2d54c9a
3e6e275
2d54c9a
3e6e275
2d54c9a
3e6e275
2d54c9a
 
 
dcec7ff
2d54c9a
 
 
3e6e275
2d54c9a
 
 
 
 
 
 
 
dcec7ff
2d54c9a
 
 
 
 
3e6e275
 
2d54c9a
3e6e275
2d54c9a
3e6e275
2d54c9a
 
5dfa3bc
2d54c9a
 
3e6e275
2d54c9a
 
 
 
3e6e275
dcec7ff
3e6e275
4f33339
2d54c9a
3e6e275
2d54c9a
 
3e6e275
 
 
2d54c9a
3e6e275
2d54c9a
 
 
3e6e275
2d54c9a
 
 
 
 
 
 
 
 
650f36a
 
 
dcec7ff
2d54c9a
dcec7ff
2d54c9a
 
dcec7ff
 
2d54c9a
dcec7ff
2d54c9a
dcec7ff
2d54c9a
3e6e275
2d54c9a
 
dcec7ff
2d54c9a
 
3e6e275
 
dcec7ff
2d54c9a
3e6e275
2d54c9a
 
dcec7ff
2d54c9a
 
3e6e275
 
2d54c9a
 
3e6e275
2d54c9a
3e6e275
 
 
2d54c9a
 
3e6e275
2d54c9a
 
 
 
3e6e275
 
 
dcec7ff
3e6e275
 
b8d4ff0
2d54c9a
 
 
3e6e275
2d54c9a
dcec7ff
2d54c9a
 
 
3e6e275
 
 
 
2d54c9a
3e6e275
5bef9cc
3e6e275
dcec7ff
3e6e275
 
 
 
dcec7ff
3e6e275
 
 
dcec7ff
3e6e275
 
dcec7ff
3e6e275
2d54c9a
 
 
dcec7ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
"""
LLM Compatibility Advisor - Streamlined Version
Author: Assistant
Description: Provides device-based LLM recommendations with popular models
Requirements: streamlit, pandas, plotly, openpyxl
"""

import streamlit as st
import pandas as pd
import re
import plotly.graph_objects as go
from typing import Optional, Tuple, Dict, List

# Must be first Streamlit command
st.set_page_config(
    page_title="LLM Compatibility Advisor", 
    layout="wide",
    page_icon="🧠"
)

@st.cache_data
def load_data():
    paths = [
        "src/BITS_INTERNS.xlsx",
        "src/Summer of AI - ICFAI  (Responses) (3).xlsx"
    ]

    combined_df = pd.DataFrame()
    for path in paths:
        try:
            df = pd.read_excel(path, sheet_name="Form Responses 1")
            df.columns = df.columns.str.strip()
            combined_df = pd.concat([combined_df, df], ignore_index=True)
        except FileNotFoundError:
            return None, f"Excel file '{path}' not found. Please upload the file."
        except Exception as e:
            return None, f"Error loading '{path}': {str(e)}"

    if combined_df.empty:
        return None, "No data found in either file."

    return combined_df, None

def extract_numeric_ram(ram) -> Optional[int]:
    if pd.isna(ram):
        return None

    ram_str = str(ram).lower().replace(" ", "")

    gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
    if gb_match:
        return int(float(gb_match.group(1)))

    mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
    if mb_match:
        return max(1, int(int(mb_match.group(1)) / 1024))

    plain_match = re.search(r"(\d+)", ram_str)
    if plain_match:
        return int(plain_match.group(1))

    return None

LLM_DATABASE = {
    "ultra_low": {
        "general": [
            {"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model"},
            {"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings"}
        ],
        "code": [
            {"name": "CodeT5-small", "size": "242MB", "description": "Code generation"}
        ]
    },
    "low": {
        "general": [
            {"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model"},
            {"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model"}
        ],
        "code": [
            {"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model"}
        ]
    },
    "moderate": {
        "general": [
            {"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model"},
            {"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct"}
        ],
        "code": [
            {"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama"}
        ]
    },
    "good": {
        "general": [
            {"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant"},
            {"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model"}
        ],
        "code": [
            {"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model"}
        ]
    },
    "high": {
        "general": [
            {"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts"},
            {"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model"}
        ],
        "code": [
            {"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist"}
        ]
    },
    "ultra_high": {
        "general": [
            {"name": "Llama-2-70B", "size": "130GB", "description": "Full precision"},
            {"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model"}
        ]
    }
}

def recommend_llm(ram_str) -> Tuple[str, str, Dict[str, List[Dict]]]:
    ram = extract_numeric_ram(ram_str)
    if ram is None:
        return "βšͺ Check exact specs", "Unknown", {}
    if ram <= 2:
        return "πŸ”Έ Ultra-lightweight models", "Ultra Low", LLM_DATABASE["ultra_low"]
    elif ram <= 4:
        return "πŸ”Έ Small language models", "Low", LLM_DATABASE["low"]
    elif ram <= 8:
        return "🟠 7B models - excellent capabilities", "Moderate", LLM_DATABASE["moderate"]
    elif ram <= 16:
        return "🟒 High-quality models", "Good", LLM_DATABASE["good"]
    elif ram <= 32:
        return "πŸ”΅ Premium models", "High", LLM_DATABASE["high"]
    else:
        return "πŸ”΅ Top-tier models", "Ultra High", LLM_DATABASE["ultra_high"]

def get_os_info(os_name) -> Tuple[str, str]:
    if pd.isna(os_name):
        return "πŸ–Ό", "Not specified"
    os = str(os_name).lower()
    if "windows" in os:
        return "πŸͺŸ", os_name
    elif "mac" in os:
        return "🍎", os_name
    elif "linux" in os or "ubuntu" in os:
        return "🐧", os_name
    elif "android" in os:
        return "πŸ€–", os_name
    elif "ios" in os:
        return "πŸ“±", os_name
    else:
        return "πŸ–Ό", os_name

def create_performance_chart(df):
    laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
    mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
    fig = go.Figure()
    fig.add_trace(go.Histogram(x=laptop_rams, name="Laptop RAM", opacity=0.7))
    fig.add_trace(go.Histogram(x=mobile_rams, name="Mobile RAM", opacity=0.7))
    fig.update_layout(
        title="RAM Distribution",
        xaxis_title="RAM (GB)",
        yaxis_title="Students",
        barmode='overlay',
        height=400
    )
    return fig

def display_models(models_dict: Dict[str, List[Dict]]):
    if not models_dict:
        return
    for category, model_list in models_dict.items():
        if model_list:
            st.markdown(f"**{category.title()} Models:**")
            for model in model_list[:5]:
                st.write(f"β€’ {model['name']} ({model['size']}) - {model['description']}")

st.title("🧠 LLM Compatibility Advisor")
st.markdown("Get personalized AI model recommendations with download sizes!")

df, error = load_data()
if error:
    st.error(error)
    st.stop()
if df is None or df.empty:
    st.error("No data found.")
    st.stop()

with st.sidebar:
    st.header("πŸ“Š Quick Stats")
    st.metric("Total Students", len(df))
    avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
    avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
    if not pd.isna(avg_laptop_ram):
        st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
    if not pd.isna(avg_mobile_ram):
        st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")

st.subheader("πŸ‘€ Individual Student Analysis")
student_names = list(df["Full Name"].unique())
student_options = ["Select a student..."] + student_names

selected_name = st.selectbox(
    "Choose a student:",
    options=student_options,
)

if selected_name != "Select a student...":
    selected_user = selected_name
    user_data = df[df["Full Name"] == selected_user].iloc[0]

    col1, col2 = st.columns(2)

    with col1:
        st.markdown("### πŸ’» Laptop")
        laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
        laptop_ram = user_data.get('Laptop RAM', 'Not specified')
        laptop_rec, _, laptop_models = recommend_llm(laptop_ram)
        st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
        st.markdown(f"**RAM:** {laptop_ram}")
        st.success(f"**Recommendation:** {laptop_rec}")
        display_models(laptop_models)

    with col2:
        st.markdown("### πŸ“± Mobile")
        mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
        mobile_ram = user_data.get('Mobile RAM', 'Not specified')
        mobile_rec, _, mobile_models = recommend_llm(mobile_ram)
        st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
        st.markdown(f"**RAM:** {mobile_ram}")
        st.success(f"**Recommendation:** {mobile_rec}")
        display_models(mobile_models)

st.markdown("---")
st.header("πŸ“Š Batch Analysis")
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
df_display["Laptop Recommendation"] = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
df_display["Mobile Recommendation"] = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
st.dataframe(df_display, use_container_width=True)

if len(df) > 1:
    st.subheader("πŸ“ˆ RAM Distribution")
    fig = create_performance_chart(df)
    st.plotly_chart(fig, use_container_width=True)

st.markdown("---")
st.header("πŸ” Model Explorer")
selected_ram_range = st.selectbox(
    "Select RAM range:",
    ["\u22642GB (Ultra Low)", "3-4GB (Low)", "5-8GB (Moderate)", 
     "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
)

ram_mapping = {
    "≀2GB (Ultra Low)": "ultra_low",
    "3-4GB (Low)": "low", 
    "5-8GB (Moderate)": "moderate",
    "9-16GB (Good)": "good",
    "17-32GB (High)": "high",
    ">32GB (Ultra High)": "ultra_high"
}

selected_key = ram_mapping[selected_ram_range]
if selected_key in LLM_DATABASE:
    st.subheader(f"Models for {selected_ram_range}")
    display_models(LLM_DATABASE[selected_key])

with st.expander("πŸ“˜ Quick Reference"):
    st.markdown("""
    ## Popular Models by Category

    **General Purpose:**
    - Llama-2 Series (7B, 13B, 70B)
    - Mistral Series
    - Gemma (2B, 7B)

    **Code Specialists:**
    - CodeLlama
    - CodeGen

    **Where to Download:**
    - πŸ€— Hugging Face Hub
    - πŸ§™οΈ Ollama
    - πŸ“¦ LM Studio
    """)

st.markdown("---")
st.markdown("*Built for BITS Pilani Interns*")