File size: 9,972 Bytes
5bef9cc
 
5cc3290
5bef9cc
5cc3290
5bef9cc
 
 
8f89783
5bef9cc
 
 
5cc3290
8f89783
5cc3290
5bef9cc
 
 
5cc3290
5bef9cc
8f89783
5bef9cc
 
 
7977841
5bef9cc
 
 
 
 
 
8f89783
5bef9cc
 
 
 
 
 
5cc3290
5bef9cc
 
 
 
 
 
 
5cc3290
5bef9cc
5cc3290
5bef9cc
 
 
 
 
 
5cc3290
5bef9cc
 
19b0de3
 
 
 
 
5cc3290
19b0de3
5bef9cc
 
19b0de3
 
5cc3290
19b0de3
 
5cc3290
19b0de3
5bef9cc
5cc3290
19b0de3
 
5cc3290
19b0de3
 
5cc3290
19b0de3
5bef9cc
 
19b0de3
 
 
 
 
5cc3290
19b0de3
5bef9cc
 
19b0de3
 
 
 
 
5cc3290
19b0de3
5bef9cc
 
19b0de3
 
5cc3290
19b0de3
5bef9cc
 
 
5cc3290
 
5bef9cc
 
 
5cc3290
5bef9cc
 
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bef9cc
5cc3290
5bef9cc
 
5cc3290
5bef9cc
 
 
 
5cc3290
 
5bef9cc
 
5cc3290
5bef9cc
5cc3290
5bef9cc
 
 
 
 
5cc3290
 
5bef9cc
 
 
 
 
5cc3290
 
 
5bef9cc
 
19b0de3
5cc3290
5bef9cc
 
 
 
 
 
 
 
 
5cc3290
5bef9cc
 
5cc3290
5bef9cc
5cc3290
5bef9cc
 
 
 
 
 
 
 
 
 
5cc3290
5bef9cc
 
 
 
 
 
 
 
 
 
 
 
 
5cc3290
 
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
 
5cc3290
 
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
 
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
5bef9cc
 
 
5cc3290
5bef9cc
5cc3290
5bef9cc
5cc3290
 
 
 
 
5bef9cc
5cc3290
5bef9cc
 
 
5cc3290
5bef9cc
 
 
 
 
5cc3290
 
 
 
5bef9cc
5cc3290
 
5bef9cc
5cc3290
19b0de3
5cc3290
 
 
 
19b0de3
5cc3290
 
 
19b0de3
5cc3290
 
 
 
5bef9cc
 
 
5cc3290
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python3
"""
LLM Compatibility Advisor - Streamlined Version
Author: Assistant
Description: Provides device-based LLM recommendations with popular models
Requirements: streamlit, pandas, plotly, openpyxl
"""

import streamlit as st
import pandas as pd
import re
import plotly.graph_objects as go
from typing import Optional, Tuple, Dict, List

# Must be first Streamlit command
st.set_page_config(
    page_title="LLM Compatibility Advisor", 
    layout="wide",
    page_icon="🧠"
)

@st.cache_data
def load_data():
    try:
        df = pd.read_excel("src/BITS_INTERNS.xlsx", sheet_name="Form Responses 1")
        df.columns = df.columns.str.strip()
        return df, None
    except FileNotFoundError:
        return None, "Excel file 'BITS_INTERNS.xlsx' not found. Please upload the file."
    except Exception as e:
        return None, f"Error loading data: {str(e)}"

def extract_numeric_ram(ram) -> Optional[int]:
    if pd.isna(ram):
        return None
    
    ram_str = str(ram).lower().replace(" ", "")
    
    # Handle GB format
    gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
    if gb_match:
        return int(float(gb_match.group(1)))
    
    # Handle MB format
    mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
    if mb_match:
        return max(1, int(int(mb_match.group(1)) / 1024))
    
    # Handle plain numbers
    plain_match = re.search(r"(\d+)", ram_str)
    if plain_match:
        return int(plain_match.group(1))
    
    return None

# Simplified LLM database
LLM_DATABASE = {
    "ultra_low": {  # ≀2GB
        "general": [
            {"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model"},
            {"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings"}
        ],
        "code": [
            {"name": "CodeT5-small", "size": "242MB", "description": "Code generation"}
        ]
    },
    "low": {  # 3-4GB
        "general": [
            {"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model"},
            {"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model"}
        ],
        "code": [
            {"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model"}
        ]
    },
    "moderate": {  # 5-8GB
        "general": [
            {"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model"},
            {"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct"}
        ],
        "code": [
            {"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama"}
        ]
    },
    "good": {  # 9-16GB
        "general": [
            {"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant"},
            {"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model"}
        ],
        "code": [
            {"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model"}
        ]
    },
    "high": {  # 17-32GB
        "general": [
            {"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts"},
            {"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model"}
        ],
        "code": [
            {"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist"}
        ]
    },
    "ultra_high": {  # >32GB
        "general": [
            {"name": "Llama-2-70B", "size": "130GB", "description": "Full precision"},
            {"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model"}
        ]
    }
}

def recommend_llm(ram_str) -> Tuple[str, str, Dict[str, List[Dict]]]:
    """Returns (recommendation, performance_tier, detailed_models)"""
    ram = extract_numeric_ram(ram_str)
    
    if ram is None:
        return "βšͺ Check exact specs", "Unknown", {}
    
    if ram <= 2:
        return "πŸ”Έ Ultra-lightweight models", "Ultra Low", LLM_DATABASE["ultra_low"]
    elif ram <= 4:
        return "πŸ”Έ Small language models", "Low", LLM_DATABASE["low"]
    elif ram <= 8:
        return "🟠 7B models - excellent capabilities", "Moderate", LLM_DATABASE["moderate"]
    elif ram <= 16:
        return "🟒 High-quality models", "Good", LLM_DATABASE["good"]
    elif ram <= 32:
        return "πŸ”΅ Premium models", "High", LLM_DATABASE["high"]
    else:
        return "πŸ”΅ Top-tier models", "Ultra High", LLM_DATABASE["ultra_high"]

def get_os_info(os_name) -> Tuple[str, str]:
    """Returns (icon, clean_name)"""
    if pd.isna(os_name):
        return "πŸ’»", "Not specified"
    
    os = str(os_name).lower()
    if "windows" in os:
        return "πŸͺŸ", os_name
    elif "mac" in os:
        return "🍎", os_name
    elif "linux" in os or "ubuntu" in os:
        return "🐧", os_name
    elif "android" in os:
        return "πŸ€–", os_name
    elif "ios" in os:
        return "πŸ“±", os_name
    else:
        return "πŸ’»", os_name

def create_performance_chart(df):
    """Create RAM distribution chart"""
    laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
    mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
    
    fig = go.Figure()
    fig.add_trace(go.Histogram(x=laptop_rams, name="Laptop RAM", opacity=0.7))
    fig.add_trace(go.Histogram(x=mobile_rams, name="Mobile RAM", opacity=0.7))
    
    fig.update_layout(
        title="RAM Distribution",
        xaxis_title="RAM (GB)",
        yaxis_title="Students",
        barmode='overlay',
        height=400
    )
    return fig

def display_models(models_dict: Dict[str, List[Dict]]):
    """Display models by category"""
    if not models_dict:
        return
    
    for category, model_list in models_dict.items():
        if model_list:
            st.markdown(f"**{category.title()} Models:**")
            for model in model_list[:5]:  # Limit to 5 per category
                st.write(f"β€’ {model['name']} ({model['size']}) - {model['description']}")

# Main App
st.title("🧠 LLM Compatibility Advisor")
st.markdown("Get personalized AI model recommendations with download sizes!")

# Load data
df, error = load_data()

if error:
    st.error(error)
    st.stop()

if df is None or df.empty:
    st.error("No data found.")
    st.stop()

# Sidebar
with st.sidebar:
    st.header("πŸ“Š Quick Stats")
    st.metric("Total Students", len(df))
    
    avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
    avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
    
    if not pd.isna(avg_laptop_ram):
        st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
    if not pd.isna(avg_mobile_ram):
        st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")

# Individual Analysis
st.subheader("πŸ‘€ Individual Student Analysis")
selected_user = st.selectbox(
    "Choose a student:",
    options=[""] + list(df["Full Name"].unique()),
    format_func=lambda x: "Select a student..." if x == "" else x
)

if selected_user:
    user_data = df[df["Full Name"] == selected_user].iloc[0]
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.markdown("### πŸ’» Laptop")
        laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
        laptop_ram = user_data.get('Laptop RAM', 'Not specified')
        laptop_rec, laptop_tier, laptop_models = recommend_llm(laptop_ram)
        
        st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
        st.markdown(f"**RAM:** {laptop_ram}")
        st.success(f"**Recommendation:** {laptop_rec}")
        
        display_models(laptop_models)
    
    with col2:
        st.markdown("### πŸ“± Mobile")
        mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
        mobile_ram = user_data.get('Mobile RAM', 'Not specified')
        mobile_rec, mobile_tier, mobile_models = recommend_llm(mobile_ram)
        
        st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
        st.markdown(f"**RAM:** {mobile_ram}")
        st.success(f"**Recommendation:** {mobile_rec}")
        
        display_models(mobile_models)

# Batch Analysis
st.markdown("---")
st.header("πŸ“Š Batch Analysis")

# Create summary table
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
df_display["Laptop Recommendation"] = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
df_display["Mobile Recommendation"] = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])

st.dataframe(df_display, use_container_width=True)

# Performance chart
if len(df) > 1:
    st.subheader("πŸ“ˆ RAM Distribution")
    fig = create_performance_chart(df)
    st.plotly_chart(fig, use_container_width=True)

# Model Explorer
st.markdown("---")
st.header("πŸ” Model Explorer")

selected_ram_range = st.selectbox(
    "Select RAM range:",
    ["≀2GB (Ultra Low)", "3-4GB (Low)", "5-8GB (Moderate)", 
     "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
)

# Map selection to database
ram_mapping = {
    "≀2GB (Ultra Low)": "ultra_low",
    "3-4GB (Low)": "low", 
    "5-8GB (Moderate)": "moderate",
    "9-16GB (Good)": "good",
    "17-32GB (High)": "high",
    ">32GB (Ultra High)": "ultra_high"
}

selected_key = ram_mapping[selected_ram_range]
if selected_key in LLM_DATABASE:
    st.subheader(f"Models for {selected_ram_range}")
    display_models(LLM_DATABASE[selected_key])

# Quick reference
with st.expander("πŸ“˜ Quick Reference"):
    st.markdown("""
    ## Popular Models by Category
    
    **General Purpose:**
    - Llama-2 Series (7B, 13B, 70B)
    - Mistral Series
    - Gemma (2B, 7B)
    
    **Code Specialists:**
    - CodeLlama
    - CodeGen
    
    **Where to Download:**
    - πŸ€— Hugging Face Hub
    - πŸ¦™ Ollama
    - πŸ“¦ LM Studio
    """)

st.markdown("---")
st.markdown("*Built for BITS Pilani Interns*")