|
|
|
from PIL import Image |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration |
|
import torch |
|
from models import load_transformers |
|
|
|
|
|
class blip2: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def __init__(self, model_pretrain:str = "Salesforce/blip2-opt-2.7b"): |
|
self.processor = Blip2Processor.from_pretrained(model_pretrain) |
|
self.model = Blip2ForConditionalGeneration.from_pretrained( |
|
model_pretrain, device_map={"": 0}, torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
def image_captioning(self, image: Image.Image) -> str: |
|
inputs = self.processor(images=image, return_tensors="pt").to(self.device, torch.float16) |
|
|
|
generated_ids = self.model.generate(**inputs) |
|
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
return generated_text |
|
|
|
def visual_question_answering(self, image: Image.Image, prompt: str) -> str: |
|
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(device=self.device, dtype=torch.float16) |
|
|
|
generated_ids = self.model.generate(**inputs) |
|
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
|
|
return generated_text |
|
|