resolved bug of dataframe
Browse files
app.py
CHANGED
|
@@ -72,7 +72,7 @@ if data:
|
|
| 72 |
# Apply OCR and NER
|
| 73 |
file_name = ocr(img_name)
|
| 74 |
Output_dict = ner(file_name)
|
| 75 |
-
df = pd.DataFrame(Output_dict)
|
| 76 |
|
| 77 |
ocr_data = ""
|
| 78 |
with open(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'ocr_label_data', data.name.split('.')[0]+'.txt'),'r+') as f :
|
|
@@ -81,6 +81,75 @@ if data:
|
|
| 81 |
st.text(ocr_data)
|
| 82 |
|
| 83 |
st.header("NER Output")
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# Apply OCR and NER
|
| 73 |
file_name = ocr(img_name)
|
| 74 |
Output_dict = ner(file_name)
|
| 75 |
+
# df = pd.DataFrame(Output_dict)
|
| 76 |
|
| 77 |
ocr_data = ""
|
| 78 |
with open(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'ocr_label_data', data.name.split('.')[0]+'.txt'),'r+') as f :
|
|
|
|
| 81 |
st.text(ocr_data)
|
| 82 |
|
| 83 |
st.header("NER Output")
|
| 84 |
+
|
| 85 |
+
new_df = pd.DataFrame()
|
| 86 |
+
new_df['Entity'] = list(Output_dict.keys())
|
| 87 |
+
|
| 88 |
+
# print(df)
|
| 89 |
+
new_df['Value'] = list(Output_dict.values())
|
| 90 |
+
new_df['Value'] = new_df['Value'].astype('str')
|
| 91 |
+
st.table(new_df)
|
| 92 |
+
|
| 93 |
+
else:
|
| 94 |
+
img_name = '3.jpg'
|
| 95 |
+
img = cv2.imread(img_name,0)
|
| 96 |
+
|
| 97 |
+
if img.shape[0] > 1500:
|
| 98 |
+
height, width = img.shape
|
| 99 |
+
img = img[height//4:-height//4, width//4:-width//4]
|
| 100 |
+
|
| 101 |
+
cv2.imwrite(os.path.join('grey_images',img_name), img)
|
| 102 |
+
|
| 103 |
+
#call main function
|
| 104 |
+
# main(os.path.join('grey_images',img_name))
|
| 105 |
+
file_path = os.path.join('grey_images',img_name)
|
| 106 |
+
img_name = os.path.basename(file_path)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
col1,col2 = st.columns(2)
|
| 110 |
+
|
| 111 |
+
with col1:
|
| 112 |
+
st.markdown("<h3 style='text-align: center;'>Grey Image</h1>", unsafe_allow_html=True)
|
| 113 |
+
st.image(os.path.join('grey_images',img_name))
|
| 114 |
+
|
| 115 |
+
# Object detection and enhance image
|
| 116 |
+
seg_result, img_file = object_detection(file_path)
|
| 117 |
+
croped_img = crop_image(seg_result, img_file, img_name)
|
| 118 |
+
image = enhance_image(croped_img, img_name)
|
| 119 |
+
|
| 120 |
+
st.markdown("<h3 style='text-align: center;'>Enhanced Image</h1>", unsafe_allow_html=True)
|
| 121 |
+
st.image(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'enhanced', img_name))
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
with col2:
|
| 125 |
+
st.markdown("<h3 style='text-align: center;'>Detected Image</h1>", unsafe_allow_html=True)
|
| 126 |
+
st.image(os.path.join('runs', 'segment',path['MAIN_FLOW_INFERENCE_FOLDER'],img_name))
|
| 127 |
+
|
| 128 |
+
# Rotation
|
| 129 |
+
processed_img = morphological_transform(image)
|
| 130 |
+
rotated_image, image = hoffman_transform(processed_img, image)
|
| 131 |
+
img_name = pytesseract_rotate(rotated_image, image, img_name)
|
| 132 |
+
|
| 133 |
+
st.markdown("<h3 style='text-align: center;'>Rotated Image</h1>", unsafe_allow_html=True)
|
| 134 |
+
st.image(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'rotated_image', img_name))
|
| 135 |
+
|
| 136 |
+
# Apply OCR and NER
|
| 137 |
+
file_name = ocr(img_name)
|
| 138 |
+
Output_dict = ner(file_name)
|
| 139 |
+
# df = pd.DataFrame(Output_dict)
|
| 140 |
+
|
| 141 |
+
ocr_data = ""
|
| 142 |
+
with open(os.path.join('runs', 'segment', path['MAIN_FLOW_INFERENCE_FOLDER'], 'ocr_label_data', img_name.split('.')[0]+'.txt'),'r+') as f :
|
| 143 |
+
ocr_data = f.read()
|
| 144 |
+
st.header("OCR Text Output")
|
| 145 |
+
st.text(ocr_data)
|
| 146 |
+
|
| 147 |
+
st.header("NER Output")
|
| 148 |
+
|
| 149 |
+
new_df = pd.DataFrame()
|
| 150 |
+
new_df['Entity'] = list(Output_dict.keys())
|
| 151 |
+
|
| 152 |
+
# print(df)
|
| 153 |
+
new_df['Value'] = list(Output_dict.values())
|
| 154 |
+
new_df['Value'] = new_df['Value'].astype('str')
|
| 155 |
+
st.table(new_df)
|