Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,539 Bytes
a0a9007 6e2c6fa ab0c591 6e2c6fa a8b1c40 6e2c6fa a8b1c40 a0a9007 6e2c6fa a8b1c40 09dd649 a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 a5d07a8 6e2c6fa 7c0a5ab 6e2c6fa 7c0a5ab d3e8957 323e41c 6e2c6fa 323e41c 6e2c6fa a0a9007 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa d3e8957 6e2c6fa a0a9007 6e2c6fa a0a9007 6e2c6fa a0a9007 a8b1c40 6e2c6fa a8b1c40 6e2c6fa a8b1c40 6e2c6fa d3e8957 a8b1c40 6e2c6fa c947ff2 a8b1c40 6e2c6fa 466e3e5 6e2c6fa d418457 a8b1c40 6e2c6fa a8b1c40 c947ff2 ab0c591 6e2c6fa d3e8957 6e2c6fa d3e8957 6e2c6fa d3e8957 6e2c6fa 449c1c1 6e2c6fa d3e8957 6e2c6fa 09dd649 a8b1c40 6e2c6fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoModel,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Qwen2.5-VL-7B-Instruct
MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-3B-Instruct
MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-7B-Abliterated-Caption-it
MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Q,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load R-4B
MODEL_ID_Y = "YannQi/R-4B"
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
model_y = AutoModel.from_pretrained(
MODEL_ID_Y,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
"""
if model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
processor = processor_q
model = model_q
elif model_name == "R-4B":
processor = processor_y
model = model_y
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
Yields raw text and Markdown-formatted text.
"""
if model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
processor = processor_q
model = model_q
elif model_name == "R-4B":
processor = processor_y
model = model_y
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["Explain the content in detail.", "images/D.jpg"],
["Explain the content (ocr).", "images/O.jpg"],
["What is the core meaning of the poem?", "images/S.jpg"],
["Provide a detailed caption for the image.", "images/A.jpg"],
["Explain the pie-chart in detail.", "images/2.jpg"],
["Jsonify Data.", "images/1.jpg"],
]
video_examples = [
["Explain the ad in detail", "videos/1.mp4"],
["Identify the main actions in the video", "videos/2.mp4"],
["Identify the main scenes in the video", "videos/3.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Qwen2.5-VL-Outpost](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output", interactive=False, lines=3, scale=2)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown()
model_choice = gr.Radio(
choices=["Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct", "R-4B", "Qwen2.5-VL-7B-Abliterated-Caption-it"],
label="Select Model",
value="Qwen2.5-VL-7B-Instruct"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
gr.Markdown(
"""
> [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The Qwen2.5-VL-7B-Instruct model is a multimodal AI model developed by Alibaba Cloud that excels at understanding both text and images. It's a Vision-Language Model (VLM) designed to handle various visual understanding tasks, including image understanding, video analysis, and even multilingual support.
>
> [Qwen2.5-VL-7B-Abliterated-Caption-it](prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it): Qwen2.5-VL-7B-Abliterated-Caption-it is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Abliterated Captioning / Uncensored Captioning. This model excels at generating detailed, context-rich, and high-fidelity captions across diverse image categories and variational aspect ratios, offering robust visual understanding without filtering or censorship.
"""
)
gr.Markdown("> [R-4B](https://huggingface.co/YannQi/R-4B): R-4B is a multimodal large language model designed for adaptive auto-thinking, able to intelligently switch between detailed reasoning and direct responses to optimize quality and efficiency. It achieves state-of-the-art performance and efficiency with user-controllable response modes, making it ideal for both simple and complex tasks.")
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |