Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,531 +1,166 @@
|
|
1 |
-
import spaces
|
2 |
import gradio as gr
|
|
|
|
|
3 |
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
6 |
import random
|
7 |
-
import
|
8 |
-
from typing import Tuple, Union, List, Optional, Any, Dict
|
9 |
-
import numpy as np
|
10 |
-
import time
|
11 |
-
import zipfile
|
12 |
-
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
13 |
-
|
14 |
-
# Description for the app
|
15 |
-
DESCRIPTION = """## flux comparator hpc/."""
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
20 |
-
img.save(unique_name)
|
21 |
-
return unique_name
|
22 |
-
|
23 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
24 |
-
if randomize_seed:
|
25 |
-
seed = random.randint(0, MAX_SEED)
|
26 |
-
return seed
|
27 |
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
-
MAX_IMAGE_SIZE = 2048
|
30 |
-
|
31 |
-
# Load pipelines for both models
|
32 |
-
# Flux.1-dev-realism
|
33 |
-
base_model_dev = "prithivMLmods/Flux.1-Merged" # Merge of (black-forest-labs/FLUX.1-dev + black-forest-labs/FLUX.1-schnell)
|
34 |
-
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
|
35 |
-
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
36 |
-
trigger_word = "Super Realism"
|
37 |
-
pipe_dev.load_lora_weights(lora_repo)
|
38 |
-
pipe_dev.to("cuda")
|
39 |
-
|
40 |
-
# Flux.1-krea
|
41 |
-
dtype = torch.bfloat16
|
42 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
44 |
-
# Merge of (black-forest-labs/FLUX.1-dev + https://huggingface.co/black-forest-labs/FLUX.1-Krea-dev)
|
45 |
-
good_vae = AutoencoderKL.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", subfolder="vae", torch_dtype=dtype).to(device)
|
46 |
-
pipe_krea = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-Krea-Merged-Dev", torch_dtype=dtype, vae=taef1).to(device)
|
47 |
-
|
48 |
-
# Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
|
49 |
-
@torch.inference_mode()
|
50 |
-
def flux_pipe_call_that_returns_an_iterable_of_images(
|
51 |
-
self,
|
52 |
-
prompt: Union[str, List[str]] = None,
|
53 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
54 |
-
height: Optional[int] = None,
|
55 |
-
width: Optional[int] = None,
|
56 |
-
num_inference_steps: int = 28,
|
57 |
-
timesteps: List[int] = None,
|
58 |
-
guidance_scale: float = 3.5,
|
59 |
-
num_images_per_prompt: Optional[int] = 1,
|
60 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
61 |
-
latents: Optional[torch.FloatTensor] = None,
|
62 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
63 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
64 |
-
output_type: Optional[str] = "pil",
|
65 |
-
return_dict: bool = True,
|
66 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
67 |
-
max_sequence_length: int = 512,
|
68 |
-
good_vae: Optional[Any] = None,
|
69 |
-
):
|
70 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
71 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
72 |
-
|
73 |
-
self.check_inputs(
|
74 |
-
prompt,
|
75 |
-
prompt_2,
|
76 |
-
height,
|
77 |
-
width,
|
78 |
-
prompt_embeds=prompt_embeds,
|
79 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
80 |
-
max_sequence_length=max_sequence_length,
|
81 |
-
)
|
82 |
-
|
83 |
-
self._guidance_scale = guidance_scale
|
84 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
85 |
-
self._interrupt = False
|
86 |
-
|
87 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
88 |
-
device = self._execution_device
|
89 |
-
|
90 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
91 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
92 |
-
prompt=prompt,
|
93 |
-
prompt_2=prompt_2,
|
94 |
-
prompt_embeds=prompt_embeds,
|
95 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
96 |
-
device=device,
|
97 |
-
num_images_per_prompt=num_images_per_prompt,
|
98 |
-
max_sequence_length=max_sequence_length,
|
99 |
-
lora_scale=lora_scale,
|
100 |
-
)
|
101 |
-
|
102 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
103 |
-
latents, latent_image_ids = self.prepare_latents(
|
104 |
-
batch_size * num_images_per_prompt,
|
105 |
-
num_channels_latents,
|
106 |
-
height,
|
107 |
-
width,
|
108 |
-
prompt_embeds.dtype,
|
109 |
-
device,
|
110 |
-
generator,
|
111 |
-
latents,
|
112 |
-
)
|
113 |
|
114 |
-
|
115 |
-
image_seq_len = latents.shape[1]
|
116 |
-
mu = calculate_shift(
|
117 |
-
image_seq_len,
|
118 |
-
self.scheduler.config.base_image_seq_len,
|
119 |
-
self.scheduler.config.max_image_seq_len,
|
120 |
-
self.scheduler.config.base_shift,
|
121 |
-
self.scheduler.config.max_shift,
|
122 |
-
)
|
123 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
124 |
-
self.scheduler,
|
125 |
-
num_inference_steps,
|
126 |
-
device,
|
127 |
-
timesteps,
|
128 |
-
sigmas,
|
129 |
-
mu=mu,
|
130 |
-
)
|
131 |
-
self._num_timesteps = len(timesteps)
|
132 |
-
|
133 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
134 |
-
|
135 |
-
for i, t in enumerate(timesteps):
|
136 |
-
if self.interrupt:
|
137 |
-
continue
|
138 |
-
|
139 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
140 |
-
|
141 |
-
noise_pred = self.transformer(
|
142 |
-
hidden_states=latents,
|
143 |
-
timestep=timestep / 1000,
|
144 |
-
guidance=guidance,
|
145 |
-
pooled_projections=pooled_prompt_embeds,
|
146 |
-
encoder_hidden_states=prompt_embeds,
|
147 |
-
txt_ids=text_ids,
|
148 |
-
img_ids=latent_image_ids,
|
149 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
150 |
-
return_dict=False,
|
151 |
-
)[0]
|
152 |
-
|
153 |
-
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
154 |
-
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
155 |
-
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
156 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
157 |
-
|
158 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
159 |
-
torch.cuda.empty_cache()
|
160 |
-
|
161 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
162 |
-
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
163 |
-
image = good_vae.decode(latents, return_dict=False)[0]
|
164 |
-
self.maybe_free_model_hooks()
|
165 |
-
torch.cuda.empty_cache()
|
166 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
167 |
-
|
168 |
-
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
|
169 |
-
|
170 |
-
# Helper functions for flux.1-krea
|
171 |
-
def calculate_shift(
|
172 |
-
image_seq_len,
|
173 |
-
base_seq_len: int = 256,
|
174 |
-
max_seq_len: int = 4096,
|
175 |
-
base_shift: float = 0.5,
|
176 |
-
max_shift: float = 1.16,
|
177 |
-
):
|
178 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
179 |
-
b = base_shift - m * base_seq_len
|
180 |
-
mu = image_seq_len * m + b
|
181 |
-
return mu
|
182 |
|
183 |
-
def retrieve_timesteps(
|
184 |
-
scheduler,
|
185 |
-
num_inference_steps: Optional[int] = None,
|
186 |
-
device: Optional[Union[str, torch.device]] = None,
|
187 |
-
timesteps: Optional[List[int]] = None,
|
188 |
-
sigmas: Optional[List[float]] = None,
|
189 |
-
**kwargs,
|
190 |
-
):
|
191 |
-
if timesteps is not None and sigmas is not None:
|
192 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
|
193 |
-
if timesteps is not None:
|
194 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
195 |
-
timesteps = scheduler.timesteps
|
196 |
-
num_inference_steps = len(timesteps)
|
197 |
-
elif sigmas is not None:
|
198 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
199 |
-
timesteps = scheduler.timesteps
|
200 |
-
num_inference_steps = len(timesteps)
|
201 |
-
else:
|
202 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
203 |
-
timesteps = scheduler.timesteps
|
204 |
-
return timesteps, num_inference_steps
|
205 |
-
|
206 |
-
# Styles for flux.1-dev-realism
|
207 |
-
style_list = [
|
208 |
-
{"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
|
209 |
-
{"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
|
210 |
-
{"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
|
211 |
-
{"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
|
212 |
-
]
|
213 |
-
|
214 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
215 |
-
DEFAULT_STYLE_NAME = "Style Zero"
|
216 |
-
STYLE_NAMES = list(styles.keys())
|
217 |
-
|
218 |
-
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
|
219 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
220 |
-
return p.replace("{prompt}", positive), n
|
221 |
-
|
222 |
-
# Generation function for flux.1-dev-realism
|
223 |
@spaces.GPU
|
224 |
-
def
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
guidance_scale=
|
262 |
-
|
263 |
-
|
264 |
-
generator=generator,
|
265 |
-
output_type="pil",
|
266 |
-
).images
|
267 |
-
|
268 |
-
end_time = time.time()
|
269 |
-
duration = end_time - start_time
|
270 |
-
|
271 |
-
image_paths = [save_image(img) for img in images]
|
272 |
-
|
273 |
-
zip_path = None
|
274 |
-
if zip_images:
|
275 |
-
zip_name = str(uuid.uuid4()) + ".zip"
|
276 |
-
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
277 |
-
for i, img_path in enumerate(image_paths):
|
278 |
-
zipf.write(img_path, arcname=f"Img_{i}.png")
|
279 |
-
zip_path = zip_name
|
280 |
-
|
281 |
-
return image_paths, seed, f"{duration:.2f}", zip_path
|
282 |
-
|
283 |
-
# Generation function for flux.1-krea
|
284 |
-
@spaces.GPU
|
285 |
-
def generate_krea(
|
286 |
-
prompt: str,
|
287 |
-
seed: int = 0,
|
288 |
-
width: int = 1024,
|
289 |
-
height: int = 1024,
|
290 |
-
guidance_scale: float = 4.5,
|
291 |
-
randomize_seed: bool = False,
|
292 |
-
num_inference_steps: int = 28,
|
293 |
-
num_images: int = 1,
|
294 |
-
zip_images: bool = False,
|
295 |
-
progress=gr.Progress(track_tqdm=True),
|
296 |
-
):
|
297 |
if randomize_seed:
|
298 |
seed = random.randint(0, MAX_SEED)
|
299 |
-
generator = torch.Generator().manual_seed(seed)
|
300 |
-
|
301 |
-
start_time = time.time()
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
306 |
prompt=prompt,
|
307 |
guidance_scale=guidance_scale,
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
generator=
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
images.append(final_img)
|
316 |
-
|
317 |
-
end_time = time.time()
|
318 |
-
duration = end_time - start_time
|
319 |
-
|
320 |
-
image_paths = [save_image(img) for img in images]
|
321 |
-
|
322 |
-
zip_path = None
|
323 |
-
if zip_images:
|
324 |
-
zip_name = str(uuid.uuid4()) + ".zip"
|
325 |
-
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
326 |
-
for i, img_path in enumerate(image_paths):
|
327 |
-
zipf.write(img_path, arcname=f"Img_{i}.png")
|
328 |
-
zip_path = zip_name
|
329 |
-
|
330 |
-
return image_paths, seed, f"{duration:.2f}", zip_path
|
331 |
-
|
332 |
-
# Main generation function to handle model choice
|
333 |
-
@spaces.GPU
|
334 |
-
def generate(
|
335 |
-
model_choice: str,
|
336 |
-
prompt: str,
|
337 |
-
negative_prompt: str = "",
|
338 |
-
use_negative_prompt: bool = False,
|
339 |
-
seed: int = 0,
|
340 |
-
width: int = 1024,
|
341 |
-
height: int = 1024,
|
342 |
-
guidance_scale: float = 3,
|
343 |
-
randomize_seed: bool = False,
|
344 |
-
style_name: str = DEFAULT_STYLE_NAME,
|
345 |
-
num_inference_steps: int = 30,
|
346 |
-
num_images: int = 1,
|
347 |
-
zip_images: bool = False,
|
348 |
-
progress=gr.Progress(track_tqdm=True),
|
349 |
-
):
|
350 |
-
if model_choice == "flux.1-dev-merged":
|
351 |
-
return generate_dev(
|
352 |
-
prompt=prompt,
|
353 |
-
negative_prompt=negative_prompt,
|
354 |
-
use_negative_prompt=use_negative_prompt,
|
355 |
-
seed=seed,
|
356 |
-
width=width,
|
357 |
-
height=height,
|
358 |
-
guidance_scale=guidance_scale,
|
359 |
-
randomize_seed=randomize_seed,
|
360 |
-
style_name=style_name,
|
361 |
-
num_inference_steps=num_inference_steps,
|
362 |
-
num_images=num_images,
|
363 |
-
zip_images=zip_images,
|
364 |
-
progress=progress,
|
365 |
-
)
|
366 |
-
elif model_choice == "flux.1-krea-merged-dev":
|
367 |
-
return generate_krea(
|
368 |
prompt=prompt,
|
369 |
-
seed=seed,
|
370 |
-
width=width,
|
371 |
-
height=height,
|
372 |
guidance_scale=guidance_scale,
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
progress=progress,
|
378 |
-
)
|
379 |
-
else:
|
380 |
-
raise ValueError("Invalid model choice")
|
381 |
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
.gradio-container {
|
392 |
-
max-width: 590px !important;
|
393 |
-
margin: 0 auto !important;
|
394 |
-
}
|
395 |
-
h1 {
|
396 |
-
text-align: center;
|
397 |
-
}
|
398 |
-
footer {
|
399 |
-
visibility: hidden;
|
400 |
}
|
401 |
-
|
402 |
|
403 |
-
|
404 |
-
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
405 |
-
gr.Markdown(DESCRIPTION)
|
406 |
-
with gr.Row():
|
407 |
-
prompt = gr.Text(
|
408 |
-
label="Prompt",
|
409 |
-
show_label=False,
|
410 |
-
max_lines=1,
|
411 |
-
placeholder="Enter your prompt",
|
412 |
-
container=False,
|
413 |
-
)
|
414 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
415 |
-
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
|
416 |
|
417 |
-
with gr.
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
label="Select Model",
|
422 |
-
value="flux.1-krea-merged-dev"
|
423 |
-
)
|
424 |
-
|
425 |
-
with gr.Accordion("Additional Options", open=False):
|
426 |
-
style_selection = gr.Dropdown(
|
427 |
-
label="Quality Style (for flux.1-dev-realism only)",
|
428 |
-
choices=STYLE_NAMES,
|
429 |
-
value=DEFAULT_STYLE_NAME,
|
430 |
-
interactive=True,
|
431 |
-
)
|
432 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
|
433 |
-
negative_prompt = gr.Text(
|
434 |
-
label="Negative prompt",
|
435 |
-
max_lines=1,
|
436 |
-
placeholder="Enter a negative prompt",
|
437 |
-
visible=False,
|
438 |
-
)
|
439 |
-
seed = gr.Slider(
|
440 |
-
label="Seed",
|
441 |
-
minimum=0,
|
442 |
-
maximum=MAX_SEED,
|
443 |
-
step=1,
|
444 |
-
value=0,
|
445 |
-
)
|
446 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
447 |
with gr.Row():
|
448 |
-
|
449 |
-
label="
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
use_negative_prompt.change(
|
499 |
-
fn=lambda x: gr.update(visible=x),
|
500 |
-
inputs=use_negative_prompt,
|
501 |
-
outputs=negative_prompt,
|
502 |
-
api_name=False,
|
503 |
-
)
|
504 |
-
|
505 |
gr.on(
|
506 |
-
triggers=[
|
507 |
-
|
508 |
-
|
509 |
-
]
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
use_negative_prompt,
|
516 |
-
seed,
|
517 |
-
width,
|
518 |
-
height,
|
519 |
-
guidance_scale,
|
520 |
-
randomize_seed,
|
521 |
-
style_selection,
|
522 |
-
num_inference_steps,
|
523 |
-
num_images,
|
524 |
-
zip_images,
|
525 |
-
],
|
526 |
-
outputs=[result, seed_display, generation_time, zip_file],
|
527 |
-
api_name="run",
|
528 |
)
|
529 |
|
530 |
-
|
531 |
-
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import spaces
|
4 |
import torch
|
|
|
|
|
5 |
import random
|
6 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from diffusers import FluxKontextPipeline
|
9 |
+
from diffusers.utils import load_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
@spaces.GPU
|
16 |
+
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
17 |
+
"""
|
18 |
+
Perform image editing using the FLUX.1 Kontext pipeline.
|
19 |
+
|
20 |
+
This function takes an input image and a text prompt to generate a modified version
|
21 |
+
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
22 |
+
for contextual image editing tasks.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
input_image (PIL.Image.Image): The input image to be edited. Will be converted
|
26 |
+
to RGB format if not already in that format.
|
27 |
+
prompt (str): Text description of the desired edit to apply to the image.
|
28 |
+
Examples: "Remove glasses", "Add a hat", "Change background to beach".
|
29 |
+
seed (int, optional): Random seed for reproducible generation. Defaults to 42.
|
30 |
+
Must be between 0 and MAX_SEED (2^31 - 1).
|
31 |
+
randomize_seed (bool, optional): If True, generates a random seed instead of
|
32 |
+
using the provided seed value. Defaults to False.
|
33 |
+
guidance_scale (float, optional): Controls how closely the model follows the
|
34 |
+
prompt. Higher values mean stronger adherence to the prompt but may reduce
|
35 |
+
image quality. Range: 1.0-10.0. Defaults to 2.5.
|
36 |
+
steps (int, optional): Controls how many steps to run the diffusion model for.
|
37 |
+
Range: 1-30. Defaults to 28.
|
38 |
+
progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
39 |
+
generation progress. Defaults to gr.Progress(track_tqdm=True).
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
tuple: A 3-tuple containing:
|
43 |
+
- PIL.Image.Image: The generated/edited image
|
44 |
+
- int: The seed value used for generation (useful when randomize_seed=True)
|
45 |
+
- gr.update: Gradio update object to make the reuse button visible
|
46 |
+
|
47 |
+
Example:
|
48 |
+
>>> edited_image, used_seed, button_update = infer(
|
49 |
+
... input_image=my_image,
|
50 |
+
... prompt="Add sunglasses",
|
51 |
+
... seed=123,
|
52 |
+
... randomize_seed=False,
|
53 |
+
... guidance_scale=2.5
|
54 |
+
... )
|
55 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
if randomize_seed:
|
57 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
|
|
|
58 |
|
59 |
+
if input_image:
|
60 |
+
input_image = input_image.convert("RGB")
|
61 |
+
image = pipe(
|
62 |
+
image=input_image,
|
63 |
prompt=prompt,
|
64 |
guidance_scale=guidance_scale,
|
65 |
+
width = input_image.size[0],
|
66 |
+
height = input_image.size[1],
|
67 |
+
num_inference_steps=steps,
|
68 |
+
generator=torch.Generator().manual_seed(seed),
|
69 |
+
).images[0]
|
70 |
+
else:
|
71 |
+
image = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
prompt=prompt,
|
|
|
|
|
|
|
73 |
guidance_scale=guidance_scale,
|
74 |
+
num_inference_steps=steps,
|
75 |
+
generator=torch.Generator().manual_seed(seed),
|
76 |
+
).images[0]
|
77 |
+
return image, seed, gr.Button(visible=True)
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
@spaces.GPU
|
80 |
+
def infer_example(input_image, prompt):
|
81 |
+
image, seed, _ = infer(input_image, prompt)
|
82 |
+
return image, seed
|
83 |
+
|
84 |
+
css="""
|
85 |
+
#col-container {
|
86 |
+
margin: 0 auto;
|
87 |
+
max-width: 960px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
}
|
89 |
+
"""
|
90 |
|
91 |
+
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
with gr.Column(elem_id="col-container"):
|
94 |
+
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
95 |
+
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
|
96 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
100 |
+
with gr.Row():
|
101 |
+
prompt = gr.Text(
|
102 |
+
label="Prompt",
|
103 |
+
show_label=False,
|
104 |
+
max_lines=1,
|
105 |
+
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
106 |
+
container=False,
|
107 |
+
)
|
108 |
+
run_button = gr.Button("Run", scale=0)
|
109 |
+
with gr.Accordion("Advanced Settings", open=False):
|
110 |
+
|
111 |
+
seed = gr.Slider(
|
112 |
+
label="Seed",
|
113 |
+
minimum=0,
|
114 |
+
maximum=MAX_SEED,
|
115 |
+
step=1,
|
116 |
+
value=0,
|
117 |
+
)
|
118 |
+
|
119 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
120 |
+
|
121 |
+
guidance_scale = gr.Slider(
|
122 |
+
label="Guidance Scale",
|
123 |
+
minimum=1,
|
124 |
+
maximum=10,
|
125 |
+
step=0.1,
|
126 |
+
value=2.5,
|
127 |
+
)
|
128 |
+
|
129 |
+
steps = gr.Slider(
|
130 |
+
label="Steps",
|
131 |
+
minimum=1,
|
132 |
+
maximum=30,
|
133 |
+
value=28,
|
134 |
+
step=1
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Column():
|
138 |
+
result = gr.Image(label="Result", show_label=False, interactive=False)
|
139 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
140 |
|
141 |
+
|
142 |
+
examples = gr.Examples(
|
143 |
+
examples=[
|
144 |
+
["images/14.png", "Change the cat’s eyes to blue."],
|
145 |
+
["images/15.png", "Change the weather to rainy."],
|
146 |
+
["images/16.png", "Change the hair color to gray."]
|
147 |
+
],
|
148 |
+
inputs=[input_image, prompt],
|
149 |
+
outputs=[result, seed],
|
150 |
+
fn=infer_example,
|
151 |
+
cache_examples="lazy"
|
152 |
+
)
|
153 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
gr.on(
|
155 |
+
triggers=[run_button.click, prompt.submit],
|
156 |
+
fn = infer,
|
157 |
+
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
158 |
+
outputs = [result, seed, reuse_button]
|
159 |
+
)
|
160 |
+
reuse_button.click(
|
161 |
+
fn = lambda image: image,
|
162 |
+
inputs = [result],
|
163 |
+
outputs = [input_image]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
|
166 |
+
demo.launch(mcp_server=True)
|
|