Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,385 Bytes
fe8a556 9074b0b fe8a556 741065a 4fe3125 25e9aad 741bf21 25e9aad 741bf21 0ff76c1 9074b0b 0ff76c1 9074b0b fe8a556 7cdc2ba fe8a556 741065a 741bf21 0ff76c1 9074b0b fe8a556 7cdc2ba fe8a556 741065a 741bf21 0ff76c1 9074b0b fe8a556 0435164 fe8a556 0435164 fe8a556 aa9c407 fe8a556 9e6361b 741bf21 9e6361b fe8a556 0ff76c1 fe8a556 e972111 fe8a556 e972111 f6281cb 6f08bf8 fe8a556 b497ac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
import requests
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoModelForImageTextToText,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load DREX-062225-exp
MODEL_ID_X = "prithivMLmods/DREX-062225-exp"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load typhoon-ocr-3b
MODEL_ID_T = "scb10x/typhoon-ocr-3b"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load olmOCR-7B-0225-preview
MODEL_ID_O = "allenai/olmOCR-7B-0225-preview"
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True)
model_o = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_O,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Lumian-VLR-7B-Thinking
MODEL_ID_J = "prithivMLmods/Lumian-VLR-7B-Thinking"
SUBFOLDER = "think-preview"
processor_j = AutoProcessor.from_pretrained(MODEL_ID_J, trust_remote_code=True, subfolder=SUBFOLDER)
model_j = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_J,
trust_remote_code=True,
subfolder=SUBFOLDER,
torch_dtype=torch.float16
).to(device).eval()
# Load LMM-R1-MGT-PerceReason
MODEL_ID_F = "VLM-Reasoner/LMM-R1-MGT-PerceReason"
processor_f = AutoProcessor.from_pretrained(MODEL_ID_F, trust_remote_code=True)
model_f = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_F,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "DREX-062225-7B-exp":
processor = processor_x
model = model_x
elif model_name == "olmOCR-7B-0225-preview":
processor = processor_o
model = model_o
elif model_name == "Typhoon-OCR-3B":
processor = processor_t
model = model_t
elif model_name == "Lumian-VLR-7B-Thinking":
processor = processor_j
model = model_j
elif model_name == "LMM-R1-MGT-PerceReason":
processor = processor_f
model = model_f
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "DREX-062225-7B-exp":
processor = processor_x
model = model_x
elif model_name == "olmOCR-7B-0225-preview":
processor = processor_o
model = model_o
elif model_name == "Typhoon-OCR-3B":
processor = processor_t
model = model_t
elif model_name == "Lumian-VLR-7B-Thinking":
processor = processor_j
model = model_j
elif model_name == "LMM-R1-MGT-PerceReason":
processor = processor_f
model = model_f
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
def save_to_md(output_text):
"""
Saves the output text to a Markdown file and returns the file path for download.
"""
file_path = f"result_{uuid.uuid4()}.md"
with open(file_path, "w") as f:
f.write(output_text)
return file_path
# Define examples for image and video inference
image_examples = [
["Describe the safety measures in the image. Conclude (Safe / Unsafe)..", "images/5.jpg"],
["Convert this page to doc [text] precisely.", "images/3.png"],
["Convert this page to doc [text] precisely.", "images/4.png"],
["Explain the creativity in the image.", "images/6.jpg"],
["Convert this page to doc [text] precisely.", "images/1.png"],
["Convert chart to OTSL.", "images/2.png"]
]
video_examples = [
["Explain the video in detail.", "videos/2.mp4"],
["Explain the ad in detail.", "videos/1.mp4"]
]
# Added CSS to style the output area as a "Canvas"
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Multimodal VLM Thinking](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.Md)")
model_choice = gr.Radio(
choices=["Lumian-VLR-7B-Thinking", "DREX-062225-7B-exp", "olmOCR-7B-0225-preview", "LMM-R1-MGT-PerceReason", "Typhoon-OCR-3B"],
label="Select Model",
value="Lumian-VLR-7B-Thinking"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLM-Thinking/discussions)")
gr.Markdown("> Lumian-VLR-7B-Thinking is a high-fidelity vision-language reasoning model built on Qwen2.5-VL-7B-Instruct, designed for fine-grained multimodal understanding, enhancing image captioning, video reasoning, and document comprehension through explicit grounded reasoning. It is trained first via supervised fine-tuning (SFT) on visually-grounded reasoning traces and then further refined using GRPO reinforcement learning to boost reasoning accuracy.")
gr.Markdown("> LMM-R1-MGT-PerceReason is a vision-language model focused on advanced reasoning using a multimodal tree search approach enabling progressive visual-textual slow thinking, improving complex spatial and logical reasoning without fine-tuning. OLMOCR-7B-0225-preview is a 7B parameter open large model designed for OCR tasks with robust text extraction, especially in complex document layouts. ")
gr.Markdown("> Typhoon-ocr-3b is a 3B parameter OCR model optimized for efficient and accurate optical character recognition in challenging conditions. DREX-062225-exp is an experimental multimodal model emphasizing strong document reading and extraction capabilities combined with vision-language understanding to support detailed document parsing and reasoning tasks.")
gr.Markdown("> ⚠️ Note: Models in this space may not perform well on video inference tasks.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |