Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,828 Bytes
cff3d4f 6ee09b1 9810ea7 cff3d4f 7019b95 cff3d4f 94d3a2b d5cb2af 94d3a2b cff3d4f 94d3a2b cff3d4f c97526c 08d30fe 7019b95 914bd4d cff3d4f 914bd4d cff3d4f 96784fc cff3d4f 9810ea7 94d3a2b 9810ea7 914bd4d 94d3a2b cff3d4f 94d3a2b 6693a45 7019b95 94d3a2b 7019b95 c97526c 7019b95 c97526c 7019b95 c97526c 7019b95 c97526c 7019b95 9810ea7 cff3d4f c97526c cff3d4f 364cb51 c97526c 914bd4d c97526c 96119c1 c97526c 914bd4d c97526c 914bd4d c97526c 914bd4d c97526c 914bd4d c97526c 914bd4d c97526c 96119c1 94d3a2b 96119c1 914bd4d 7019b95 c97526c 914bd4d c97526c 7019b95 a3d42ff 94d3a2b 96119c1 c97526c 914bd4d 96119c1 c97526c 94d3a2b c97526c 914bd4d c97526c 94d3a2b 29d805e 94d3a2b 96119c1 94d3a2b 914bd4d 94d3a2b 29d805e 0c22ab6 29d805e 94d3a2b 29d805e 914bd4d 94d3a2b 914bd4d 94d3a2b 9810ea7 914bd4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
VisionEncoderDecoderModel,
AutoModelForVision2Seq,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from transformers.generation import GenerationConfig
from docling_core.types.doc import DoclingDocument, DocTagsDocument
import re
import ast
import html
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load ByteDance's Dolphin
MODEL_ID_K = "ByteDance/Dolphin"
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
model_k = VisionEncoderDecoderModel.from_pretrained(
MODEL_ID_K,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER,
torch_dtype=torch.float16
).to(device).eval()
# Preprocessing functions for SmolDocling-256M
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
"""Add random padding to an image based on its size."""
image = image.convert("RGB")
width, height = image.size
pad_w = int(width * random.uniform(min_percent, max_percent))
pad_h = int(height * random.uniform(min_percent, max_percent))
corner_pixel = image.getpixel((0, 0))
padded = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
return padded
def normalize_values(text, target_max=500):
"""Normalize numerical lists in text to a target maximum."""
def norm_list(vals):
m = max(vals) if vals else 1
return [round(v / m * target_max) for v in vals]
def repl(m):
lst = ast.literal_eval(m.group(0))
return "".join(f"<loc_{n}>" for n in norm_list(lst))
return re.sub(r"\[([\d\.\s,]+)\]", repl, text)
def downsample_video(video_path):
"""Extract 10 evenly spaced frames (with timestamps) from a video."""
cap = cv2.VideoCapture(video_path)
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
frames, indices = [], np.linspace(0, total - 1, 10, dtype=int)
for idx in indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, int(idx))
ok, img = cap.read()
if not ok:
continue
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
frames.append((Image.fromarray(img), round(idx / fps, 2)))
cap.release()
return frames
# Dolphin-specific inference
def model_chat(prompt, image):
proc = processor_k
mdl = model_k
device_str = "cuda" if torch.cuda.is_available() else "cpu"
# encode image
inputs = proc(image, return_tensors="pt").to(device_str).pixel_values.half()
# encode prompt
pi = proc.tokenizer(f"<s>{prompt} <Answer/>", add_special_tokens=False, return_tensors="pt").to(device_str)
# build generation config
gen_cfg = GenerationConfig.from_model_config(mdl.config)
gen_cfg.max_length = 4096
gen_cfg.min_length = 1
gen_cfg.use_cache = True
gen_cfg.bad_words_ids = [[proc.tokenizer.unk_token_id]]
gen_cfg.num_beams = 1
gen_cfg.do_sample = False
gen_cfg.repetition_penalty = 1.1
out = mdl.generate(
pixel_values=inputs,
decoder_input_ids=pi.input_ids,
decoder_attention_mask=pi.attention_mask,
generation_config=gen_cfg,
return_dict_in_generate=True,
)
seq = proc.tokenizer.batch_decode(out.sequences, skip_special_tokens=False)[0]
return seq.replace(f"<s>{prompt} <Answer/>", "").replace("<pad>", "").replace("</s>", "").strip()
def process_elements(layout_result, image):
try:
elements = ast.literal_eval(layout_result)
except:
elements = []
results, order = [], 0
for bbox, label in elements:
x1, y1, x2, y2 = map(int, bbox)
crop = image.crop((x1, y1, x2, y2))
if crop.width == 0 or crop.height == 0:
continue
if label == "text":
txt = model_chat("Read text in the image.", crop)
elif label == "table":
txt = model_chat("Parse the table in the image.", crop)
else:
txt = "[Figure]"
results.append({
"label": label,
"bbox": [x1, y1, x2, y2],
"text": txt.strip(),
"reading_order": order
})
order += 1
return results
def generate_markdown(recog):
md = ""
for el in sorted(recog, key=lambda x: x["reading_order"]):
if el["label"] == "text":
md += el["text"] + "\n\n"
elif el["label"] == "table":
md += f"**Table:**\n{el['text']}\n\n"
else:
md += el["text"] + "\n\n"
return md.strip()
def process_image_with_dolphin(image):
layout = model_chat("Parse the reading order of this document.", image)
elems = process_elements(layout, image)
return generate_markdown(elems)
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "ByteDance-s-Dolphin":
if image is None:
yield "Please upload an image."
else:
yield process_image_with_dolphin(image)
return
if model_name == "Nanonets-OCR-s":
proc, mdl = processor_m, model_m
elif model_name == "SmolDocling-256M-preview":
proc, mdl = processor_x, model_x
elif model_name == "MonkeyOCR-Recognition":
proc, mdl = processor_g, model_g
else:
yield "Invalid model selected."
return
if image is None:
yield "Please upload an image."
return
imgs = [image]
if model_name == "SmolDocling-256M-preview":
if any(tok in text for tok in ["OTSL", "code"]):
imgs = [add_random_padding(img) for img in imgs]
if any(tok in text for tok in ["OCR at text", "Identify element", "formula"]):
text = normalize_values(text, target_max=500)
messages = [
{"role":"user",
"content":[{"type":"image"} for _ in imgs] + [{"type":"text","text":text}]
}
]
prompt = proc.apply_chat_template(messages, add_generation_prompt=True)
inputs = proc(text=prompt, images=imgs, return_tensors="pt").to(device)
gen_cfg = GenerationConfig.from_model_config(mdl.config)
gen_cfg.max_new_tokens = max_new_tokens
gen_cfg.temperature = temperature
gen_cfg.top_p = top_p
gen_cfg.top_k = top_k
gen_cfg.repetition_penalty = repetition_penalty
gen_cfg.use_cache = True
streamer = TextIteratorStreamer(proc, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {
**inputs,
"streamer": streamer,
"generation_config": gen_cfg,
}
thread = Thread(target=mdl.generate, kwargs=gen_kwargs)
thread.start()
buffer = ""
full_output = ""
for new_text in streamer:
full_output += new_text
buffer += new_text.replace("<|im_end|>", "")
yield buffer
if model_name == "SmolDocling-256M-preview":
cleaned = full_output.replace("<end_of_utterance>", "").strip()
if any(tag in cleaned for tag in ["<doctag>","<otsl>","<code>","<chart>","<formula>"]):
if "<chart>" in cleaned:
cleaned = cleaned.replace("<chart>","<otsl>").replace("</chart>","</otsl>")
cleaned = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned)
tags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned], imgs)
doc = DoclingDocument.load_from_doctags(tags_doc, document_name="Document")
yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
else:
yield cleaned
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
if model_name == "ByteDance-s-Dolphin":
if not video_path:
yield "Please upload a video."
return
md_list = []
for frame, _ in downsample_video(video_path):
md_list.append(process_image_with_dolphin(frame))
yield "\n\n".join(md_list)
return
if model_name == "Nanonets-OCR-s":
proc, mdl = processor_m, model_m
elif model_name == "SmolDocling-256M-preview":
proc, mdl = processor_x, model_x
elif model_name == "MonkeyOCR-Recognition":
proc, mdl = processor_g, model_g
else:
yield "Invalid model selected."
return
if not video_path:
yield "Please upload a video."
return
frames = [f for f, _ in downsample_video(video_path)]
imgs = frames
if model_name == "SmolDocling-256M-preview":
if any(tok in text for tok in ["OTSL", "code"]):
imgs = [add_random_padding(img) for img in imgs]
if any(tok in text for tok in ["OCR at text", "Identify element", "formula"]):
pm.text.normalize_values(text, target_max=500)
messages = [
{"role":"user",
"content":[{"type":"image"} for _ in imgs] + [{"type":"text","text":text}]
}
]
prompt = proc.apply_chat_template(messages, add_generation_prompt=True)
inputs = proc(text=prompt, images=imgs, return_tensors="pt").to(device)
gen_cfg = GenerationConfig.from_model_config(mdl.config)
gen_cfg.max_new_tokens = max_new_tokens
gen_cfg.temperature = temperature
gen_cfg.top_p = top_p
gen_cfg.top_k = top_k
gen_cfg.repetition_penalty = repetition_penalty
gen_cfg.use_cache = True
streamer = TextIteratorStreamer(proc, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {
**inputs,
"streamer": streamer,
"generation_config": gen_cfg,
}
thread = Thread(target=mdl.generate, kwargs=gen_kwargs)
thread.start()
buff = ""
full = ""
for nt in streamer:
full += nt
buff += nt.replace("<|im_end|>", "")
yield buff
# Gradio UI
image_examples = [
["Convert this page to docling", "images/1.png"],
["OCR the image", "images/2.jpg"],
["Convert this page to docling", "images/3.png"],
]
video_examples = [
["Explain the ad in detail", "example/1.mp4"],
["Identify the main actions in the coca cola ad...", "example/2.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Core OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
output = gr.Textbox(label="Output", interactive=False, lines=3, scale=2)
model_choice = gr.Radio(
choices=["Nanonets-OCR-s", "SmolDocling-256M-preview", "MonkeyOCR-Recognition", "ByteDance-s-Dolphin"],
label="Select Model",
value="Nanonets-OCR-s"
)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |