File size: 14,828 Bytes
cff3d4f
 
 
 
 
 
 
 
 
6ee09b1
9810ea7
cff3d4f
7019b95
cff3d4f
 
 
 
94d3a2b
d5cb2af
94d3a2b
cff3d4f
94d3a2b
cff3d4f
 
c97526c
08d30fe
7019b95
 
914bd4d
 
 
 
cff3d4f
914bd4d
 
cff3d4f
96784fc
cff3d4f
9810ea7
94d3a2b
 
 
 
 
 
 
 
9810ea7
914bd4d
 
 
 
 
 
 
 
 
94d3a2b
 
 
 
 
cff3d4f
 
94d3a2b
6693a45
7019b95
94d3a2b
 
 
 
 
 
 
 
 
 
 
 
 
7019b95
 
c97526c
7019b95
 
 
 
c97526c
 
 
 
 
 
7019b95
 
c97526c
 
 
 
7019b95
c97526c
 
 
 
 
7019b95
9810ea7
cff3d4f
c97526c
 
 
 
 
 
 
 
 
 
 
 
 
cff3d4f
364cb51
c97526c
 
914bd4d
c97526c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96119c1
 
c97526c
 
 
 
 
914bd4d
c97526c
914bd4d
c97526c
 
 
914bd4d
c97526c
 
 
914bd4d
c97526c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914bd4d
 
c97526c
 
 
96119c1
94d3a2b
 
 
 
 
 
 
96119c1
914bd4d
 
7019b95
c97526c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914bd4d
c97526c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7019b95
a3d42ff
94d3a2b
 
 
 
 
 
96119c1
c97526c
914bd4d
96119c1
c97526c
 
 
 
 
 
 
 
 
 
 
 
94d3a2b
c97526c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914bd4d
c97526c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94d3a2b
29d805e
 
 
94d3a2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96119c1
94d3a2b
 
 
 
914bd4d
94d3a2b
 
29d805e
 
0c22ab6
29d805e
94d3a2b
 
 
 
29d805e
 
 
 
914bd4d
94d3a2b
 
 
 
 
 
914bd4d
 
 
 
 
 
94d3a2b
 
 
 
 
 
 
 
 
 
9810ea7
 
914bd4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    VisionEncoderDecoderModel,
    AutoModelForVision2Seq,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image
from transformers.generation import GenerationConfig

from docling_core.types.doc import DoclingDocument, DocTagsDocument

import re
import ast
import html

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load ByteDance's Dolphin
MODEL_ID_K = "ByteDance/Dolphin"
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
model_k = VisionEncoderDecoderModel.from_pretrained(
    MODEL_ID_K,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()

# Preprocessing functions for SmolDocling-256M

def add_random_padding(image, min_percent=0.1, max_percent=0.10):
    """Add random padding to an image based on its size."""
    image = image.convert("RGB")
    width, height = image.size
    pad_w = int(width * random.uniform(min_percent, max_percent))
    pad_h = int(height * random.uniform(min_percent, max_percent))
    corner_pixel = image.getpixel((0, 0))
    padded = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
    return padded


def normalize_values(text, target_max=500):
    """Normalize numerical lists in text to a target maximum."""
    def norm_list(vals):
        m = max(vals) if vals else 1
        return [round(v / m * target_max) for v in vals]

    def repl(m):
        lst = ast.literal_eval(m.group(0))
        return "".join(f"<loc_{n}>" for n in norm_list(lst))

    return re.sub(r"\[([\d\.\s,]+)\]", repl, text)


def downsample_video(video_path):
    """Extract 10 evenly spaced frames (with timestamps) from a video."""
    cap = cv2.VideoCapture(video_path)
    total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    frames, indices = [], np.linspace(0, total - 1, 10, dtype=int)
    for idx in indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, int(idx))
        ok, img = cap.read()
        if not ok:
            continue
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        frames.append((Image.fromarray(img), round(idx / fps, 2)))
    cap.release()
    return frames

# Dolphin-specific inference

def model_chat(prompt, image):
    proc = processor_k
    mdl = model_k
    device_str = "cuda" if torch.cuda.is_available() else "cpu"

    # encode image
    inputs = proc(image, return_tensors="pt").to(device_str).pixel_values.half()
    # encode prompt
    pi = proc.tokenizer(f"<s>{prompt} <Answer/>", add_special_tokens=False, return_tensors="pt").to(device_str)

    # build generation config
    gen_cfg = GenerationConfig.from_model_config(mdl.config)
    gen_cfg.max_length = 4096
    gen_cfg.min_length = 1
    gen_cfg.use_cache = True
    gen_cfg.bad_words_ids = [[proc.tokenizer.unk_token_id]]
    gen_cfg.num_beams = 1
    gen_cfg.do_sample = False
    gen_cfg.repetition_penalty = 1.1

    out = mdl.generate(
        pixel_values=inputs,
        decoder_input_ids=pi.input_ids,
        decoder_attention_mask=pi.attention_mask,
        generation_config=gen_cfg,
        return_dict_in_generate=True,
    )
    seq = proc.tokenizer.batch_decode(out.sequences, skip_special_tokens=False)[0]
    return seq.replace(f"<s>{prompt} <Answer/>", "").replace("<pad>", "").replace("</s>", "").strip()


def process_elements(layout_result, image):
    try:
        elements = ast.literal_eval(layout_result)
    except:
        elements = []

    results, order = [], 0
    for bbox, label in elements:
        x1, y1, x2, y2 = map(int, bbox)
        crop = image.crop((x1, y1, x2, y2))
        if crop.width == 0 or crop.height == 0:
            continue

        if label == "text":
            txt = model_chat("Read text in the image.", crop)
        elif label == "table":
            txt = model_chat("Parse the table in the image.", crop)
        else:
            txt = "[Figure]"

        results.append({
            "label": label,
            "bbox": [x1, y1, x2, y2],
            "text": txt.strip(),
            "reading_order": order
        })
        order += 1

    return results


def generate_markdown(recog):
    md = ""
    for el in sorted(recog, key=lambda x: x["reading_order"]):
        if el["label"] == "text":
            md += el["text"] + "\n\n"
        elif el["label"] == "table":
            md += f"**Table:**\n{el['text']}\n\n"
        else:
            md += el["text"] + "\n\n"
    return md.strip()

def process_image_with_dolphin(image):
    layout = model_chat("Parse the reading order of this document.", image)
    elems  = process_elements(layout, image)
    return generate_markdown(elems)

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    if model_name == "ByteDance-s-Dolphin":
        if image is None:
            yield "Please upload an image."
        else:
            yield process_image_with_dolphin(image)
        return

    if model_name == "Nanonets-OCR-s":
        proc, mdl = processor_m, model_m
    elif model_name == "SmolDocling-256M-preview":
        proc, mdl = processor_x, model_x
    elif model_name == "MonkeyOCR-Recognition":
        proc, mdl = processor_g, model_g
    else:
        yield "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image."
        return

    imgs = [image]
    if model_name == "SmolDocling-256M-preview":
        if any(tok in text for tok in ["OTSL", "code"]):
            imgs = [add_random_padding(img) for img in imgs]
        if any(tok in text for tok in ["OCR at text", "Identify element", "formula"]):
            text = normalize_values(text, target_max=500)

    messages = [
        {"role":"user",
         "content":[{"type":"image"} for _ in imgs] + [{"type":"text","text":text}]
        }
    ]
    prompt = proc.apply_chat_template(messages, add_generation_prompt=True)
    inputs = proc(text=prompt, images=imgs, return_tensors="pt").to(device)

    gen_cfg = GenerationConfig.from_model_config(mdl.config)
    gen_cfg.max_new_tokens      = max_new_tokens
    gen_cfg.temperature         = temperature
    gen_cfg.top_p               = top_p
    gen_cfg.top_k               = top_k
    gen_cfg.repetition_penalty  = repetition_penalty
    gen_cfg.use_cache           = True

    streamer = TextIteratorStreamer(proc, skip_prompt=True, skip_special_tokens=True)
    gen_kwargs = {
        **inputs,
        "streamer": streamer,
        "generation_config": gen_cfg,
    }

    thread = Thread(target=mdl.generate, kwargs=gen_kwargs)
    thread.start()

    buffer = ""
    full_output = ""
    for new_text in streamer:
        full_output += new_text
        buffer     += new_text.replace("<|im_end|>", "")
        yield buffer

    if model_name == "SmolDocling-256M-preview":
        cleaned = full_output.replace("<end_of_utterance>", "").strip()
        if any(tag in cleaned for tag in ["<doctag>","<otsl>","<code>","<chart>","<formula>"]):
            if "<chart>" in cleaned:
                cleaned = cleaned.replace("<chart>","<otsl>").replace("</chart>","</otsl>")
                cleaned = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned)
            tags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned], imgs)
            doc = DoclingDocument.load_from_doctags(tags_doc, document_name="Document")
            yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
        else:
            yield cleaned

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    if model_name == "ByteDance-s-Dolphin":
        if not video_path:
            yield "Please upload a video."
            return
        md_list = []
        for frame, _ in downsample_video(video_path):
            md_list.append(process_image_with_dolphin(frame))
        yield "\n\n".join(md_list)
        return

    if model_name == "Nanonets-OCR-s":
        proc, mdl = processor_m, model_m
    elif model_name == "SmolDocling-256M-preview":
        proc, mdl = processor_x, model_x
    elif model_name == "MonkeyOCR-Recognition":
        proc, mdl = processor_g, model_g
    else:
        yield "Invalid model selected."
        return

    if not video_path:
        yield "Please upload a video."
        return

    frames = [f for f, _ in downsample_video(video_path)]
    imgs = frames
    if model_name == "SmolDocling-256M-preview":
        if any(tok in text for tok in ["OTSL", "code"]):
            imgs = [add_random_padding(img) for img in imgs]
        if any(tok in text for tok in ["OCR at text", "Identify element", "formula"]):
pm.text.normalize_values(text, target_max=500)

    messages = [
        {"role":"user",
         "content":[{"type":"image"} for _ in imgs] + [{"type":"text","text":text}]
        }
    ]
    prompt = proc.apply_chat_template(messages, add_generation_prompt=True)
    inputs = proc(text=prompt, images=imgs, return_tensors="pt").to(device)

    gen_cfg = GenerationConfig.from_model_config(mdl.config)
    gen_cfg.max_new_tokens      = max_new_tokens
    gen_cfg.temperature         = temperature
    gen_cfg.top_p               = top_p
    gen_cfg.top_k               = top_k
    gen_cfg.repetition_penalty  = repetition_penalty
    gen_cfg.use_cache           = True

    streamer = TextIteratorStreamer(proc, skip_prompt=True, skip_special_tokens=True)
    gen_kwargs = {
        **inputs,
        "streamer": streamer,
        "generation_config": gen_cfg,
    }

    thread = Thread(target=mdl.generate, kwargs=gen_kwargs)
    thread.start()

    buff = ""
    full = ""
    for nt in streamer:
        full += nt
        buff += nt.replace("<|im_end|>", "")
        yield buff

# Gradio UI
image_examples = [
    ["Convert this page to docling", "images/1.png"],
    ["OCR the image", "images/2.jpg"],
    ["Convert this page to docling", "images/3.png"],
]
video_examples = [
    ["Explain the ad in detail", "example/1.mp4"],
    ["Identify the main actions in the coca cola ad...", "example/2.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Core OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False, lines=3, scale=2)
            model_choice = gr.Radio(
                choices=["Nanonets-OCR-s", "SmolDocling-256M-preview", "MonkeyOCR-Recognition", "ByteDance-s-Dolphin"],
                label="Select Model",
                value="Nanonets-OCR-s"
            )
    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)