Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,535 Bytes
cff3d4f 6ee09b1 9810ea7 cff3d4f 7019b95 cff3d4f 94d3a2b d5cb2af 94d3a2b cff3d4f 94d3a2b cff3d4f 08d30fe 7019b95 cff3d4f 96784fc cff3d4f 9810ea7 94d3a2b 9810ea7 d5cb2af 94d3a2b cff3d4f 94d3a2b 6693a45 7019b95 94d3a2b 7019b95 9810ea7 cff3d4f 7019b95 cff3d4f 94d3a2b cff3d4f 364cb51 96119c1 94d3a2b 7019b95 96119c1 94d3a2b 96119c1 7019b95 96119c1 7019b95 a3d42ff 94d3a2b 7019b95 96119c1 94d3a2b 96119c1 7019b95 96119c1 7019b95 94d3a2b 29d805e 94d3a2b 41a2df3 94d3a2b 96119c1 94d3a2b 29d805e 0c22ab6 29d805e 94d3a2b 29d805e 94d3a2b 29d805e 94d3a2b d5cb2af 94d3a2b 29d805e 94d3a2b 9810ea7 29d805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
VisionEncoderDecoderModel,
AutoModelForVision2Seq,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from docling_core.types.doc import DoclingDocument, DocTagsDocument
import re
import ast
import html
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load ByteDance's Dolphin
MODEL_ID_K = "ByteDance/Dolphin"
processor_k = AutoProcessor.from_pretrained(MODEL_ID_K, trust_remote_code=True)
model_k = VisionEncoderDecoderModel.from_pretrained(
MODEL_ID_K,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER,
torch_dtype=torch.float16
).to(device).eval()
# Preprocessing functions for SmolDocling-256M
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
"""Add random padding to an image based on its size."""
image = image.convert("RGB")
width, height = image.size
pad_w_percent = random.uniform(min_percent, max_percent)
pad_h_percent = random.uniform(min_percent, max_percent)
pad_w = int(width * pad_w_percent)
pad_h = int(height * pad_h_percent)
corner_pixel = image.getpixel((0, 0)) # Top-left corner
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
return padded_image
def normalize_values(text, target_max=500):
"""Normalize numerical values in text to a target maximum."""
def normalize_list(values):
max_value = max(values) if values else 1
return [round((v / max_value) * target_max) for v in values]
def process_match(match):
num_list = ast.literal_eval(match.group(0))
normalized = normalize_list(num_list)
return "".join([f"<loc_{num}>" for num in normalized])
pattern = r"\[([\d\.\s,]+)\]"
normalized_text = re.sub(pattern, process_match, text)
return normalized_text
def downsample_video(video_path):
"""Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Dolphin-specific functions
def model_chat(prompt, image):
"""Use Dolphin model for inference."""
processor = processor_k
model = model_k
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = processor(image, return_tensors="pt").to(device)
pixel_values = inputs.pixel_values.half()
prompt_inputs = processor.tokenizer(
f"<s>{prompt} <Answer/>",
add_special_tokens=False,
return_tensors="pt"
).to(device)
outputs = model.generate(
pixel_values=pixel_values,
decoder_input_ids=prompt_inputs.input_ids,
decoder_attention_mask=prompt_inputs.attention_mask,
min_length=1,
max_length=4096,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1
)
sequence = processor.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)[0]
cleaned = sequence.replace(f"<s>{prompt} <Answer/>", "").replace("<pad>", "").replace("</s>", "").strip()
return cleaned
def process_elements(layout_results, image):
"""Parse layout results and extract elements from the image."""
# Placeholder parsing logic based on expected Dolphin output
# Assuming layout_results is a string like "[(x1,y1,x2,y2,label), ...]"
try:
elements = ast.literal_eval(layout_results)
except:
elements = [] # Fallback if parsing fails
recognition_results = []
reading_order = 0
for bbox, label in elements:
try:
x1, y1, x2, y2 = map(int, bbox)
cropped = image.crop((x1, y1, x2, y2))
if cropped.size[0] > 0 and cropped.size[1] > 0:
if label == "text":
text = model_chat("Read text in the image.", cropped)
recognition_results.append({
"label": label,
"bbox": [x1, y1, x2, y2],
"text": text.strip(),
"reading_order": reading_order
})
elif label == "table":
table_text = model_chat("Parse the table in the image.", cropped)
recognition_results.append({
"label": label,
"bbox": [x1, y1, x2, y2],
"text": table_text.strip(),
"reading_order": reading_order
})
elif label == "figure":
recognition_results.append({
"label": label,
"bbox": [x1, y1, x2, y2],
"text": "[Figure]", # Placeholder for figure content
"reading_order": reading_order
})
reading_order += 1
except Exception as e:
print(f"Error processing element: {e}")
continue
return recognition_results
def generate_markdown(recognition_results):
"""Generate markdown from extracted elements."""
markdown = ""
for element in sorted(recognition_results, key=lambda x: x["reading_order"]):
if element["label"] == "text":
markdown += f"{element['text']}\n\n"
elif element["label"] == "table":
markdown += f"**Table:**\n{element['text']}\n\n"
elif element["label"] == "figure":
markdown += f"{element['text']}\n\n"
return markdown.strip()
def process_image_with_dolphin(image):
"""Process a single image with Dolphin model."""
layout_output = model_chat("Parse the reading order of this document.", image)
elements = process_elements(layout_output, image)
markdown_content = generate_markdown(elements)
return markdown_content
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""Generate responses for image input using the selected model."""
if model_name == "ByteDance-s-Dolphin":
if image is None:
yield "Please upload an image."
return
markdown_content = process_image_with_dolphin(image)
yield markdown_content
else:
# Existing logic for other models
if model_name == "Nanonets-OCR-s":
processor = processor_m
model = model_m
elif model_name == "MonkeyOCR-Recognition":
processor = processor_g
model = model_g
elif model_name == "SmolDocling-256M-preview":
processor = processor_x
model = model_x
else:
yield "Invalid model selected."
return
if image is None:
yield "Please upload an image."
return
images = [image]
if model_name == "SmolDocling-256M-preview":
if "OTSL" in text or "code" in text:
images = [add_random_padding(img) for img in images]
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
text = normalize_values(text, target_max=500)
messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in images] + [
{"type": "text", "text": text}
]
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
full_output = ""
for new_text in streamer:
full_output += new_text
buffer += new_text.replace("<|im_end|>", "")
yield buffer
if model_name == "SmolDocling-256M-preview":
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
if "<chart>" in cleaned_output:
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
markdown_output = doc.export_to_markdown()
yield f"**MD Output:**\n\n{markdown_output}"
else:
yield cleaned_output
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""Generate responses for video input using the selected model."""
if model_name == "ByteDance-s-Dolphin":
if video_path is None:
yield "Please upload a video."
return
frames = downsample_video(video_path)
markdown_contents = []
for frame, _ in frames:
markdown_content = process_image_with_dolphin(frame)
markdown_contents.append(markdown_content)
combined_markdown = "\n\n".join(markdown_contents)
yield combined_markdown
else:
# Existing logic for other models
if model_name == "Nanonets-OCR-s":
processor = processor_m
model = model_m
elif model_name == "MonkeyOCR-Recognition":
processor = processor_g
model = model_g
elif model_name == "SmolDocling-256M-preview":
processor = processor_x
model = model_x
else:
yield "Invalid model selected."
return
if video_path is None:
yield "Please upload a video."
return
frames = downsample_video(video_path)
images = [frame for frame, _ in frames]
if model_name == "SmolDocling-256M-preview":
if "OTSL" in text or "code" in text:
images = [add_random_padding(img) for img in images]
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
text = normalize_values(text, target_max=500)
messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in images] + [
{"type": "text", "text": text}
]
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
full_output = ""
for new_text in streamer:
full_output += new_text
buffer += new_text.replace("<|im_end|>", "")
yield buffer
if model_name == "SmolDocling-256M-preview":
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
if "<chart>" in cleaned_output:
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
markdown_output = doc.export_to_markdown()
yield f"**MD Output:**\n\n{markdown_output}"
else:
yield cleaned_output
# Define examples for image and video inference
image_examples = [
["Convert this page to docling", "images/1.png"],
["OCR the image", "images/2.jpg"],
["Convert this page to docling", "images/3.png"],
]
video_examples = [
["Explain the ad in detail", "example/1.mp4"],
["Identify the main actions in the coca cola ad...", "example/2.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Core OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
output = gr.Textbox(label="Output", interactive=False, lines=3, scale=2)
model_choice = gr.Radio(
choices=["Nanonets-OCR-s", "SmolDocling-256M-preview", "MonkeyOCR-Recognition", "ByteDance-s-Dolphin"],
label="Select Model",
value="Nanonets-OCR-s"
)
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=output
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |