Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
6 |
+
|
7 |
+
# Load HuggingFace API token
|
8 |
+
load_dotenv()
|
9 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
+
|
11 |
+
# Initialize the HuggingFace LLM
|
12 |
+
llm = HuggingFaceEndpoint(
|
13 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
14 |
+
huggingfacehub_api_token=HF_TOKEN.strip(),
|
15 |
+
temperature=0.7,
|
16 |
+
task="text-generation",
|
17 |
+
max_new_tokens=200
|
18 |
+
)
|
19 |
+
|
20 |
+
# Streamlit UI setup
|
21 |
+
st.set_page_config(page_title="🧠 HuggingFace Chatbot", page_icon="🤖")
|
22 |
+
st.title("🤖 HuggingFace Chatbot")
|
23 |
+
st.caption("Built with Streamlit + LangChain (No schema!)")
|
24 |
+
|
25 |
+
# Initialize session state for chat history
|
26 |
+
if "messages" not in st.session_state:
|
27 |
+
st.session_state.messages = [
|
28 |
+
{"role": "assistant", "content": "Hi there! Ask me anything."}
|
29 |
+
]
|
30 |
+
|
31 |
+
# Display chat history
|
32 |
+
for msg in st.session_state.messages:
|
33 |
+
with st.chat_message(msg["role"]):
|
34 |
+
st.markdown(msg["content"])
|
35 |
+
|
36 |
+
# Handle user input
|
37 |
+
if prompt := st.chat_input("Type your message here..."):
|
38 |
+
# Add user message
|
39 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
40 |
+
with st.chat_message("user"):
|
41 |
+
st.markdown(prompt)
|
42 |
+
|
43 |
+
# Prepare context as a plain string (no schema)
|
44 |
+
context = ""
|
45 |
+
for msg in st.session_state.messages:
|
46 |
+
role = "User" if msg["role"] == "user" else "Assistant"
|
47 |
+
context += f"{role}: {msg['content']}\n"
|
48 |
+
context += "Assistant:"
|
49 |
+
|
50 |
+
# Generate response from LLM
|
51 |
+
with st.chat_message("assistant"):
|
52 |
+
response = llm.invoke(context)
|
53 |
+
st.markdown(response)
|
54 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|