Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,35 +20,38 @@ llm = HuggingFaceEndpoint(
|
|
20 |
# Streamlit UI setup
|
21 |
st.set_page_config(page_title="π§ HuggingFace Chatbot", page_icon="π€")
|
22 |
st.title("π€ HuggingFace Chatbot")
|
23 |
-
st.caption("Built with Streamlit + LangChain (
|
24 |
|
25 |
-
# Initialize
|
26 |
if "messages" not in st.session_state:
|
27 |
st.session_state.messages = [
|
28 |
{"role": "assistant", "content": "Hi there! Ask me anything."}
|
29 |
]
|
30 |
|
31 |
-
# Display chat
|
32 |
for msg in st.session_state.messages:
|
33 |
with st.chat_message(msg["role"]):
|
34 |
st.markdown(msg["content"])
|
35 |
|
36 |
-
#
|
37 |
if prompt := st.chat_input("Type your message here..."):
|
|
|
38 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
39 |
with st.chat_message("user"):
|
40 |
st.markdown(prompt)
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
chat_history = ""
|
45 |
for msg in st.session_state.messages:
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
-
#
|
|
|
|
|
51 |
with st.chat_message("assistant"):
|
52 |
-
response = llm.invoke(
|
53 |
st.markdown(response)
|
54 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
20 |
# Streamlit UI setup
|
21 |
st.set_page_config(page_title="π§ HuggingFace Chatbot", page_icon="π€")
|
22 |
st.title("π€ HuggingFace Chatbot")
|
23 |
+
st.caption("Built with Streamlit + LangChain (50-word max answers)")
|
24 |
|
25 |
+
# Initialize chat history
|
26 |
if "messages" not in st.session_state:
|
27 |
st.session_state.messages = [
|
28 |
{"role": "assistant", "content": "Hi there! Ask me anything."}
|
29 |
]
|
30 |
|
31 |
+
# Display chat messages
|
32 |
for msg in st.session_state.messages:
|
33 |
with st.chat_message(msg["role"]):
|
34 |
st.markdown(msg["content"])
|
35 |
|
36 |
+
# Chat input
|
37 |
if prompt := st.chat_input("Type your message here..."):
|
38 |
+
# Add user message
|
39 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
40 |
with st.chat_message("user"):
|
41 |
st.markdown(prompt)
|
42 |
|
43 |
+
# Construct prompt (only user + assistant, formatted)
|
44 |
+
conversation = "You are a helpful assistant. Keep replies within 50 words.\n\n"
|
|
|
45 |
for msg in st.session_state.messages:
|
46 |
+
if msg["role"] == "user":
|
47 |
+
conversation += f"User: {msg['content']}\n"
|
48 |
+
elif msg["role"] == "assistant":
|
49 |
+
continue # Don't include previous assistant replies
|
50 |
|
51 |
+
conversation += "Assistant:" # Prompt the model to continue
|
52 |
+
|
53 |
+
# Generate model response
|
54 |
with st.chat_message("assistant"):
|
55 |
+
response = llm.invoke(conversation).strip().split("Assistant:")[-1].strip()
|
56 |
st.markdown(response)
|
57 |
st.session_state.messages.append({"role": "assistant", "content": response})
|