Spaces:
Sleeping
Sleeping
from transformers import DetrImageProcessor, DetrForObjectDetection | |
from PIL import Image, ImageDraw | |
import torch | |
import gradio as gr | |
# Load model and processor | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
FACE_CLASS_INDEX = 1 # COCO class ID for 'person' | |
def detect_faces(img: Image.Image): | |
# Make a copy to draw on | |
img_draw = img.copy() | |
draw = ImageDraw.Draw(img_draw) | |
# Preprocess and predict | |
inputs = processor(images=img, return_tensors="pt") | |
outputs = model(**inputs) | |
# Get results | |
target_sizes = torch.tensor([img.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.8)[0] | |
count = 0 | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
if label.item() == FACE_CLASS_INDEX: | |
count += 1 | |
box = [round(i, 2) for i in box.tolist()] | |
draw.rectangle(box, outline="lime", width=3) | |
draw.text((box[0], box[1] - 10), f"{score:.2f}", fill="lime") | |
return img_draw, f"Total Persons Detected: {count}" | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=detect_faces, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Image(type="pil"), gr.Text()], | |
title="Person Detection with DETR", | |
description="Uses DETR model to detect people (class 1 - COCO dataset). Note: not specialized for face detection." | |
) | |
iface.launch() | |