|
import time |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import faiss |
|
from sklearn.preprocessing import normalize |
|
from transformers import AutoTokenizer, AutoModelForQuestionAnswering |
|
from sentence_transformers import SentenceTransformer |
|
import pickle |
|
import gradio as gr |
|
|
|
print(torch.cuda.is_available()) |
|
|
|
__all__ = [ |
|
"mdeberta", |
|
"wangchanberta-hyp", |
|
] |
|
|
|
predict_method = [ |
|
"faiss", |
|
"faissWithModel", |
|
"cosineWithModel", |
|
"semanticSearchWithModel", |
|
] |
|
|
|
DEFAULT_MODEL = 'wangchanberta-hyp' |
|
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base' |
|
|
|
MODEL_DICT = { |
|
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params', |
|
'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params', |
|
'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params', |
|
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params', |
|
} |
|
|
|
DATA_PATH = 'models/dataset.xlsx' |
|
EMBEDDINGS_PATH = 'models/embeddings.pkl' |
|
|
|
|
|
class ChatbotModel: |
|
def __init__(self, model=DEFAULT_MODEL): |
|
self._chatbot = Chatbot() |
|
self._chatbot.load_data() |
|
self._chatbot.load_model(model) |
|
self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL) |
|
self._chatbot.set_vectors() |
|
self._chatbot.set_index() |
|
|
|
def chat(self, question): |
|
return self._chatbot.answer_question(question) |
|
|
|
def eval(self, model, predict_method): |
|
return self._chatbot.eval(model_name=model, predict_method=predict_method) |
|
|
|
|
|
class Chatbot: |
|
def __init__(self): |
|
|
|
self.df = None |
|
self.test_df = None |
|
self.model = None |
|
self.model_name = None |
|
self.tokenizer = None |
|
self.embedding_model = None |
|
self.vectors = None |
|
self.index = None |
|
self.k = 1 |
|
|
|
def load_data(self, path: str = DATA_PATH): |
|
self.df = pd.read_excel(path, sheet_name='Default') |
|
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context'] |
|
|
|
def load_model(self, model_name: str = DEFAULT_MODEL): |
|
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name]) |
|
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name]) |
|
self.model_name = model_name |
|
|
|
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL): |
|
if torch.cuda.is_available(): |
|
self.embedding_model = SentenceTransformer(model_name, device='cuda') |
|
else: |
|
self.embedding_model = SentenceTransformer(model_name) |
|
|
|
def set_vectors(self): |
|
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH)) |
|
|
|
def set_index(self): |
|
if torch.cuda.is_available(): |
|
res = faiss.StandardGpuResources() |
|
self.index = faiss.IndexFlatL2(self.vectors.shape[1]) |
|
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index) |
|
gpu_index_flat.add(self.vectors) |
|
self.index = gpu_index_flat |
|
else: |
|
self.index = faiss.IndexFlatL2(self.vectors.shape[1]) |
|
self.index.add(self.vectors) |
|
|
|
def get_embeddings(self, text_list): |
|
return self.embedding_model.encode(text_list) |
|
|
|
def prepare_sentences_vector(self, encoded_list): |
|
encoded_list = [i.reshape(1, -1) for i in encoded_list] |
|
encoded_list = np.vstack(encoded_list).astype('float32') |
|
encoded_list = normalize(encoded_list) |
|
return encoded_list |
|
|
|
def store_embeddings(self, embeddings): |
|
with open('models/embeddings.pkl', "wb") as fOut: |
|
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
def load_embeddings(self, file_path): |
|
with open(file_path, "rb") as fIn: |
|
stored_data = pickle.load(fIn) |
|
stored_sentences = stored_data['sentences'] |
|
stored_embeddings = stored_data['embeddings'] |
|
return stored_embeddings |
|
|
|
def model_pipeline(self, question, similar_context): |
|
inputs = self.tokenizer(question, similar_context, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = self.model(**inputs) |
|
answer_start_index = outputs.start_logits.argmax() |
|
answer_end_index = outputs.end_logits.argmax() |
|
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1] |
|
Answer = self.tokenizer.decode(predict_answer_tokens) |
|
return Answer |
|
|
|
def faiss_search(self, question_vector): |
|
distances, indices = self.index.search(question_vector, self.k) |
|
similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)] |
|
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)] |
|
return similar_questions, similar_contexts, distances, indices |
|
|
|
def predict(self, message): |
|
message = message.strip() |
|
question_vector = self.get_embeddings(message) |
|
question_vector = self.prepare_sentences_vector([question_vector]) |
|
similar_questions, similar_contexts, distances, indices = self.faiss_search(question_vector) |
|
Answer = self.model_pipeline(str(message), similar_contexts[0]) |
|
start_index = similar_contexts.find(Answer) |
|
end_index = start_index + len(Answer) |
|
output = { |
|
"user_question": message, |
|
"answer": self.df['Answer'][indices[0][0]], |
|
"distance": round(distances[0][0], 4), |
|
"highlight_start": start_index, |
|
"highlight_end": end_index |
|
} |
|
return output |
|
|
|
|
|
def highlight_text(text, start_index, end_index): |
|
if start_index < 0: |
|
start_index = 0 |
|
if end_index > len(text): |
|
end_index = len(text) |
|
highlighted_text = "" |
|
for i, char in enumerate(text): |
|
if i == start_index: |
|
highlighted_text += "<mark>" |
|
highlighted_text += char |
|
if i == end_index - 1: |
|
highlighted_text += "</mark>" |
|
return highlighted_text |
|
|
|
|
|
if __name__ == "__main__": |
|
bot = ChatbotModel() |
|
|
|
def chat_interface(question, history): |
|
response = bot._chatbot.predict(question) |
|
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"]) |
|
return highlighted_answer |
|
|
|
EXAMPLE = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"] |
|
|
|
demo = gr.ChatInterface(fn=chat_interface, examples=EXAMPLE, title="CE66-04: Thai Question Answering System by using Deep Learning") |
|
demo.launch() |
|
|