Update config.py
Browse files
config.py
CHANGED
@@ -1,69 +1,69 @@
|
|
1 |
-
# config.py
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import os
|
5 |
-
|
6 |
-
# --- Paths ---
|
7 |
-
# Adjust DATA_PATH to your actual data location
|
8 |
-
DATA_PATH = './data/synthetic_transactions_samples_5000.csv'
|
9 |
-
TOKENIZER_PATH = '
|
10 |
-
LABEL_ENCODERS_PATH = '
|
11 |
-
MODEL_SAVE_DIR = '
|
12 |
-
PREDICTIONS_SAVE_DIR = './predictions/' # To save predictions for voting ensemble
|
13 |
-
|
14 |
-
# --- Data Columns ---
|
15 |
-
TEXT_COLUMN = "Sanction_Context"
|
16 |
-
# Define all your target label columns
|
17 |
-
LABEL_COLUMNS = [
|
18 |
-
"Red_Flag_Reason",
|
19 |
-
"Maker_Action",
|
20 |
-
"Escalation_Level",
|
21 |
-
"Risk_Category",
|
22 |
-
"Risk_Drivers",
|
23 |
-
"Investigation_Outcome"
|
24 |
-
]
|
25 |
-
# Example metadata columns. Add actual numerical/categorical metadata if available in your CSV.
|
26 |
-
# For now, it's an empty list. If you add metadata, ensure these columns exist and are numeric or can be encoded.
|
27 |
-
METADATA_COLUMNS = [] # e.g., ["Risk_Score", "Transaction_Amount"]
|
28 |
-
|
29 |
-
# --- Model Hyperparameters ---
|
30 |
-
MAX_LEN = 128 # Maximum sequence length for transformer tokenizers
|
31 |
-
BATCH_SIZE = 16 # Batch size for training and evaluation
|
32 |
-
LEARNING_RATE = 2e-5 # Learning rate for AdamW optimizer
|
33 |
-
NUM_EPOCHS = 3 # Number of training epochs. Adjust based on convergence.
|
34 |
-
DROPOUT_RATE = 0.3 # Dropout rate for regularization
|
35 |
-
|
36 |
-
# --- Device Configuration ---
|
37 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
-
|
39 |
-
# --- Specific Model Configurations ---
|
40 |
-
BERT_MODEL_NAME = 'bert-base-uncased'
|
41 |
-
ROBERTA_MODEL_NAME = 'roberta-base'
|
42 |
-
DEBERTA_MODEL_NAME = 'microsoft/deberta-base'
|
43 |
-
|
44 |
-
# TF-IDF
|
45 |
-
TFIDF_MAX_FEATURES = 5000 # Max features for TF-IDF vectorizer
|
46 |
-
|
47 |
-
# --- Field-Specific Strategy (Conceptual) ---
|
48 |
-
# This dictionary provides conceptual strategies for enhancing specific fields.
|
49 |
-
# Actual implementation requires adapting the models (e.g., custom loss functions, metadata integration).
|
50 |
-
FIELD_STRATEGIES = {
|
51 |
-
"Maker_Action": {
|
52 |
-
"loss": "focal_loss", # Requires custom Focal Loss implementation
|
53 |
-
"enhancements": ["action_templates", "context_prompt_tuning"] # Advanced NLP concepts
|
54 |
-
},
|
55 |
-
"Risk_Category": {
|
56 |
-
"enhancements": ["numerical_metadata", "transaction_patterns"] # Integrate METADATA_COLUMNS
|
57 |
-
},
|
58 |
-
"Escalation_Level": {
|
59 |
-
"enhancements": ["class_balancing", "policy_keyword_patterns"] # Handled by class weights/metadata
|
60 |
-
},
|
61 |
-
"Investigation_Outcome": {
|
62 |
-
"type": "classification_or_generation" # If generation, T5/BART would be needed.
|
63 |
-
}
|
64 |
-
}
|
65 |
-
|
66 |
-
# Ensure model save and predictions directories exist
|
67 |
-
os.makedirs(MODEL_SAVE_DIR, exist_ok=True)
|
68 |
-
os.makedirs(PREDICTIONS_SAVE_DIR, exist_ok=True)
|
69 |
os.makedirs(TOKENIZER_PATH, exist_ok=True)
|
|
|
1 |
+
# config.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
# --- Paths ---
|
7 |
+
# Adjust DATA_PATH to your actual data location
|
8 |
+
DATA_PATH = './data/synthetic_transactions_samples_5000.csv'
|
9 |
+
TOKENIZER_PATH = '/app/tokenizer/'
|
10 |
+
LABEL_ENCODERS_PATH = '/app/label_encoders.pkl'
|
11 |
+
MODEL_SAVE_DIR = '/app/saved_models/'
|
12 |
+
PREDICTIONS_SAVE_DIR = './predictions/' # To save predictions for voting ensemble
|
13 |
+
|
14 |
+
# --- Data Columns ---
|
15 |
+
TEXT_COLUMN = "Sanction_Context"
|
16 |
+
# Define all your target label columns
|
17 |
+
LABEL_COLUMNS = [
|
18 |
+
"Red_Flag_Reason",
|
19 |
+
"Maker_Action",
|
20 |
+
"Escalation_Level",
|
21 |
+
"Risk_Category",
|
22 |
+
"Risk_Drivers",
|
23 |
+
"Investigation_Outcome"
|
24 |
+
]
|
25 |
+
# Example metadata columns. Add actual numerical/categorical metadata if available in your CSV.
|
26 |
+
# For now, it's an empty list. If you add metadata, ensure these columns exist and are numeric or can be encoded.
|
27 |
+
METADATA_COLUMNS = [] # e.g., ["Risk_Score", "Transaction_Amount"]
|
28 |
+
|
29 |
+
# --- Model Hyperparameters ---
|
30 |
+
MAX_LEN = 128 # Maximum sequence length for transformer tokenizers
|
31 |
+
BATCH_SIZE = 16 # Batch size for training and evaluation
|
32 |
+
LEARNING_RATE = 2e-5 # Learning rate for AdamW optimizer
|
33 |
+
NUM_EPOCHS = 3 # Number of training epochs. Adjust based on convergence.
|
34 |
+
DROPOUT_RATE = 0.3 # Dropout rate for regularization
|
35 |
+
|
36 |
+
# --- Device Configuration ---
|
37 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
|
39 |
+
# --- Specific Model Configurations ---
|
40 |
+
BERT_MODEL_NAME = 'bert-base-uncased'
|
41 |
+
ROBERTA_MODEL_NAME = 'roberta-base'
|
42 |
+
DEBERTA_MODEL_NAME = 'microsoft/deberta-base'
|
43 |
+
|
44 |
+
# TF-IDF
|
45 |
+
TFIDF_MAX_FEATURES = 5000 # Max features for TF-IDF vectorizer
|
46 |
+
|
47 |
+
# --- Field-Specific Strategy (Conceptual) ---
|
48 |
+
# This dictionary provides conceptual strategies for enhancing specific fields.
|
49 |
+
# Actual implementation requires adapting the models (e.g., custom loss functions, metadata integration).
|
50 |
+
FIELD_STRATEGIES = {
|
51 |
+
"Maker_Action": {
|
52 |
+
"loss": "focal_loss", # Requires custom Focal Loss implementation
|
53 |
+
"enhancements": ["action_templates", "context_prompt_tuning"] # Advanced NLP concepts
|
54 |
+
},
|
55 |
+
"Risk_Category": {
|
56 |
+
"enhancements": ["numerical_metadata", "transaction_patterns"] # Integrate METADATA_COLUMNS
|
57 |
+
},
|
58 |
+
"Escalation_Level": {
|
59 |
+
"enhancements": ["class_balancing", "policy_keyword_patterns"] # Handled by class weights/metadata
|
60 |
+
},
|
61 |
+
"Investigation_Outcome": {
|
62 |
+
"type": "classification_or_generation" # If generation, T5/BART would be needed.
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
# Ensure model save and predictions directories exist
|
67 |
+
os.makedirs(MODEL_SAVE_DIR, exist_ok=True)
|
68 |
+
os.makedirs(PREDICTIONS_SAVE_DIR, exist_ok=True)
|
69 |
os.makedirs(TOKENIZER_PATH, exist_ok=True)
|