EarthLoc2 / path_app.py
Pawel Piwowarski
init commit
0a82b18
import gradio as gr
import torch
import faiss
import numpy as np
import pandas as pd
import folium
from PIL import Image
from pathlib import Path
import torchvision.transforms as tfm
from torchvision.transforms import functional as F
import logging
import sys
import io
import base64
import time
import math
import random
import ast
from models.apl_model_dinov2 import DINOv2FeatureExtractor
# Append additional paths as required.
sys.path.append(str(Path("image-matching-models")))
sys.path.append(str(Path("image-matching-models/matching/third_party")))
import util_matching
from matching import get_matcher
# --- Configuration ---
logging.basicConfig(level=logging.INFO)
# 1. DEFINE PATHS (Update these paths as needed)
MODEL_CHECKPOINT_PATH = Path("weights/best_model_95.6.torch")
FAISS_INDEX_PATH = Path("faiss_index/faiss_index_2021.bin")
CSV_MAPPING_PATH = Path("faiss_index/faiss_index_to_local_path.csv")
DEVICE = "cpu"
MATCHING_IMG_SIZE = 512
logging.info(f"Using device: {DEVICE}")
# 2. VALIDATE FILE PATHS
for path, desc in [
(MODEL_CHECKPOINT_PATH, "Model checkpoint"),
(FAISS_INDEX_PATH, "FAISS index"),
(CSV_MAPPING_PATH, "Path mapping CSV"),
]:
if not path.exists():
raise FileNotFoundError(f"{desc} not found at: {path}")
MODEL_NAME = "xfeat_steerers"
# 3. Initialize the matcher
matcher = get_matcher(MODEL_NAME, device=DEVICE, max_num_keypoints=2048)
# manually set the device to CPU in case GPU is avaliable
if MODEL_NAME == 'xfeat_steerers':
# a trick to avoid errors of device mismatch when using this model
matcher.model.dev = DEVICE
def pil_to_base64(image):
"""Convert a PIL image to a base64-encoded string for HTML embedding."""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_str}"
# --- MODIFIED: Updated create_map function to handle query footprint ---
def create_map(
final_footprint, candidate_num, filename, inliers, query_footprint=None
):
"""
Create and return a Folium map (as HTML string) showing the final footprint (blue)
and optionally the query's ground truth footprint (orange).
"""
# Determine the map's center and zoom level
if final_footprint:
center = final_footprint[0]
zoom = 10
elif query_footprint:
center = query_footprint[0]
zoom = 10
else:
center = [0, 0]
zoom = 2
m = folium.Map(location=center, zoom_start=zoom)
# Draw the ground truth query footprint in orange if available
if query_footprint:
folium.Polygon(
locations=query_footprint,
popup="Ground Truth Query Footprint",
color="orange",
fill=True,
fill_color="orange",
fill_opacity=0.4,
).add_to(m)
# Draw the predicted footprint in blue if available
if final_footprint:
# Create a popup with the footprint coordinates
footprint_text = "\n".join(
[f"({lat:.4f}, {lon:.4f})" for lat, lon in final_footprint]
)
popup_text = f"Predicted Footprint:<br>{footprint_text}<br><br>Candidate: {candidate_num}<br>Inliers: {inliers}"
# Add polygon
folium.Polygon(
locations=final_footprint,
popup=popup_text,
color="blue",
fill=True,
fill_color="cyan",
fill_opacity=0.5,
).add_to(m)
# Add a marker with the footprint text
folium.Marker(
location=[final_footprint[0][0], final_footprint[0][1]],
popup=f"Footprint Coordinates:<br>{footprint_text}",
icon=folium.Icon(color="blue"),
).add_to(m)
elif not query_footprint:
# If no footprints are available at all, show a marker
folium.Marker(
location=[0, 0],
popup="No valid location found.",
icon=folium.Icon(color="red"),
).add_to(m)
return m._repr_html_()
# --- New Helper Functions for Augmented Candidate Image Using Tile Indices ---
def get_surrounding_tiles(candidate_path):
"""
Given a candidate image path, extract its tile indices (zoom, row, column).
Then, retrieve image files in the same directory with the same zoom level
and specific row/col offsets.
"""
candidate_zoom, candidate_row, candidate_col = util_matching.get_tile_indices(
candidate_path
)
folder = candidate_path.parent.parent
files = [
p
for p in folder.glob("**/*")
if p.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
tiles = []
row_offsets = [-4, 0, 4]
col_offsets = [-4, 0, 4]
desired_rows = {candidate_row + r for r in row_offsets}
desired_cols = {candidate_col + c for c in col_offsets}
for p in files:
try:
zoom, row, col = util_matching.get_tile_indices(p)
if (
zoom == candidate_zoom
and row in desired_rows
and col in desired_cols
):
tiles.append((p, (row, col), None))
except Exception:
continue
tiles.sort(key=lambda t: (t[1][0], t[1][1]))
return tiles
def compose_tiles_ordered(tiles, tile_size, candidate_indices):
"""
Given a list of tiles, create a 3x3 grid image where the positions
correspond to a step of 4 from the candidate's row/col.
For any missing tile, insert a blank image.
"""
candidate_row, candidate_col = candidate_indices
grid_img = Image.new("RGB", (tile_size[0] * 3, tile_size[1] * 3))
blank = Image.new("RGB", tile_size, color=(0, 0, 0))
tile_dict = {rc: p for (p, rc, _) in tiles}
for i, row_offset in enumerate([-4, 0, 4]):
for j, col_offset in enumerate([-4, 0, 4]):
desired_row = candidate_row + row_offset
desired_col = candidate_col + col_offset
tile_path = tile_dict.get((desired_row, desired_col))
if tile_path:
try:
img = Image.open(tile_path).convert("RGB")
except Exception as e:
logging.error(f"Could not open tile {tile_path}: {e}")
img = blank
else:
img = blank
img = tfm.Resize(tile_size, antialias=True)(img)
grid_img.paste(img, (j * tile_size[0], i * tile_size[1]))
return grid_img
# --- Finished Matching Function ---
def run_matching(query_image, candidate_image, base_footprint):
"""
Runs 4 iterations of matching and returns the best result.
"""
local_fm = None
viz_params = None
for iteration in range(4):
(
num_inliers,
local_fm,
predicted_footprint,
pretty_footprint,
) = util_matching.estimate_footprint(
local_fm,
query_image,
candidate_image,
matcher,
base_footprint,
HW=MATCHING_IMG_SIZE,
viz_params=viz_params,
)
if num_inliers == -1 or num_inliers is None:
return -1, []
if hasattr(predicted_footprint, "tolist"):
best_footprint = predicted_footprint.tolist()
else:
best_footprint = predicted_footprint
return num_inliers, best_footprint
# --- Load Assets (Done once at startup) ---
logging.info("Loading assets. This may take a moment...")
# 1. LOAD THE MODEL AND CHECKPOINT
try:
model = DINOv2FeatureExtractor(
model_type="vit_base_patch14_reg4_dinov2.lvd142m",
num_of_layers_to_unfreeze=0,
desc_dim=768,
aggregator_type="SALAD",
)
logging.info(f"Loading model checkpoint from {MODEL_CHECKPOINT_PATH}...")
model_state_dict = torch.load(MODEL_CHECKPOINT_PATH, map_location=DEVICE)
model.load_state_dict(model_state_dict)
model = model.to(DEVICE)
model.eval()
logging.info("DINOv2 model and checkpoint loaded successfully.")
except Exception as e:
logging.error(f"Failed to load the model: {e}")
raise
# 2. LOAD THE FAISS INDEX
faiss_index = faiss.read_index(str(FAISS_INDEX_PATH))
num_db_images = faiss_index.ntotal // 4
logging.info(
f"FAISS index loaded. Contains {faiss_index.ntotal} vectors for {num_db_images} unique images."
)
# 3. LOAD THE PATH MAPPING
try:
mapping_df = pd.read_csv(CSV_MAPPING_PATH, index_col="faiss_index")
logging.info(f"Path mapping loaded. Contains {len(mapping_df)} entries.")
except Exception as e:
logging.error(f"Failed to load path mapping CSV: {e}")
raise
# 4. DEFINE IMAGE TRANSFORM
image_transform = tfm.Compose(
[
tfm.Resize((model.image_size, model.image_size), antialias=True),
tfm.ToTensor(),
tfm.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
logging.info("Assets loaded. Gradio app is ready.")
# --- MODIFIED: Core Application Logic ---
def search_and_retrieve(
query_image: Image.Image, query_footprint_str: str, num_results: int
):
"""
Main function to search the database, run matching, and return results.
This function is a generator to update the UI sequentially.
"""
progress = gr.Progress()
query_footprint = None
if query_footprint_str:
try:
query_footprint = ast.literal_eval(query_footprint_str)
query_footprint = [list(coord) for coord in query_footprint]
except (ValueError, SyntaxError):
logging.warning("Could not parse query footprint string.")
query_footprint = None
if query_image is None:
# Return a blank map and a blank image
yield create_map(None, None, None, None), None
return
progress(0.1, desc="Preprocessing query")
if query_image.mode == "RGBA":
query_image = query_image.convert("RGB")
image_tensor = image_transform(query_image).to(DEVICE)
with torch.no_grad():
descriptor = model(image_tensor.unsqueeze(0))
descriptor_np = descriptor.cpu().numpy()
k_neighbors = num_results
progress(0.2, desc=f"Searching database for {k_neighbors} neighbors")
distances, indices = faiss_index.search(descriptor_np, k_neighbors)
flat_indices = indices.flatten()
global_best_inliers = -1
global_best_footprint = None
global_candidate_num = None
global_filename = None
global_best_display_image = None
candidate_infos = []
processed_image_indices = set()
query_tensor = tfm.ToTensor()(tfm.Resize((MATCHING_IMG_SIZE, MATCHING_IMG_SIZE), antialias=True)(query_image))
progress(0.4, desc="Processing candidates")
for faiss_idx in flat_indices:
#if len(candidate_infos) >= num_results:
# break
image_index = faiss_idx % num_db_images
best_rotation_index = faiss_idx // num_db_images
if image_index in processed_image_indices:
continue
processed_image_indices.add(image_index)
candidate_num = len(candidate_infos) + 1
candidate_path = Path(mapping_df.loc[image_index]["local_path"])
try:
_, candidate_row, candidate_col = util_matching.get_tile_indices(candidate_path)
except Exception:
logging.warning(
f"Skipping candidate {candidate_path.name} due to parsing error."
)
continue
tiles = get_surrounding_tiles(candidate_path)
composite_img = compose_tiles_ordered(
tiles, (1024, 1024), (candidate_row, candidate_col)
)
display_img = F.rotate(
composite_img, [0, 90, 180, 270][best_rotation_index]
)
candidate_img_tensor = tfm.ToTensor()(composite_img)
candidate_img_tensor = tfm.Resize(
(MATCHING_IMG_SIZE * 3, MATCHING_IMG_SIZE * 3), antialias=True
)(candidate_img_tensor)
candidate_img_tensor = F.rotate(
candidate_img_tensor, [0, 90, 180, 270][best_rotation_index]
)
candidate_img_tensor = candidate_img_tensor.to(DEVICE)
progress(
0.5 + len(candidate_infos) / num_results * 0.4,
desc=f"Running matching for candidate {candidate_num}",
)
base_footprint = util_matching.path_to_footprint(candidate_path)
best_inliers, best_footprint = run_matching(
query_tensor, candidate_img_tensor, base_footprint
)
if best_inliers > -1:
candidate_infos.append(
{
"candidate_num": candidate_num,
"filename": candidate_path.name,
"inliers": best_inliers,
"display_image": display_img,
"footprint": best_footprint,
}
)
if best_inliers > global_best_inliers:
global_best_inliers = best_inliers
global_best_footprint = best_footprint
global_candidate_num = candidate_num
global_filename = candidate_path.name
global_best_display_image = display_img
progress(0.9, desc="Finalizing results")
folium_map_html = create_map(
global_best_footprint,
global_candidate_num,
global_filename,
global_best_inliers,
query_footprint=query_footprint,
)
progress(1, desc="Done")
# By yielding results, we can control the UI update sequence.
# First, update the map and clear the previous candidate image.
yield folium_map_html, None
# Then, update the UI again to show the new candidate image.
# The map HTML is sent again to keep it displayed.
yield folium_map_html, global_best_display_image
# --- Create and Launch the Gradio App ---
if __name__ == "__main__":
example_list = []
queries_folder = Path("./data/queries")
if queries_folder.exists() and queries_folder.is_dir():
image_extensions = ["*.jpg", "*.jpeg", "*.png"]
image_files = []
for ext in image_extensions:
image_files.extend(queries_folder.glob(ext))
if image_files:
num_examples = min(10, len(image_files))
random_examples = random.sample(image_files, num_examples)
# Create a list of lists for examples. Each inner list corresponds
# to the inputs of the gr.Examples component.
example_list = [
[str(p), str(util_matching.get_footprint_from_path(p))]
for p in random_examples
]
logging.info(
f"Loaded {len(example_list)} examples for Gradio with footprints."
)
else:
logging.warning(
f"No images found in the examples folder: {queries_folder}"
)
else:
logging.warning(f"Examples folder not found: {queries_folder}")
model_description = """
## Model Details
This is a public API for inference of the EarthLoc2 model, which implemets the amazing works of:
- EarthLoc (https://earthloc-and-earthmatch.github.io/)
- EarthMatch (https://earthloc-and-earthmatch.github.io/)
- AstroLoc (https://astro-loc.github.io/)
### Architecture
- DINOv2 base with SALAD aggregator out dim = 3084
- FAISS index ~ 8gb, indexes 161496 * 4 images (4 rotated versions) from 2021
### Training
- Trained on the original EarthLoc dataset (zooms 9,10,11), in range -60,60 latitude, polar regions not supported
- Training included additional queries which were not part of the test/val sets
- 5000 iterations with a batch size of 96
### Performance
- Achieves R@10 = 90.6 on the original EarthLoc test and val sets (when retrieving against whole db as is)
- Overall performance is around 10% worse than AstroLoc (https://9d214e4bc329a5c3f9.gradio.live/)
- Particularly not working well on very small or very large areas.
### Matching
- Uses the Xfeat_steerers matcher with 2048 maximal number of keypoints, we recommend Master with 2048 if you have access to GPU (we are too poor for it).
"""
# Define a custom orange theme with a standard font
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
font=gr.themes.GoogleFont("Inter"),
).set(
button_primary_background_fill="*primary_900",
button_primary_background_fill_hover="*primary_700",
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown("# Aerial Photography Locator ")
with gr.Row():
# --- Left Column (Inputs) ---
with gr.Column(scale=2):
image_input = gr.Image(
type="pil",
label="Aerial photos of Earth",
height=400,
)
# Hidden textbox to carry footprint data from examples
hidden_footprint_text = gr.Textbox(
visible=False, label="Query Footprint"
)
slider = gr.Slider(
minimum=1,
maximum=20,
step=1,
value=10,
label="Number of Candidates to Process",
info="The higher this number to more likely the model is to find a match, however it takes longer to find it. Expect around 5 second more compute per candidate."
)
submit_btn = gr.Button("Localize Image", variant="primary")
gr.Examples(
examples=example_list,
inputs=[image_input, hidden_footprint_text],
label="Example Queries",
examples_per_page=10,
cache_examples=False,
)
# --- Right Column (Outputs and Details) ---
with gr.Column(scale=2):
map_output = gr.HTML(label="Final Footprint Map")
image_output = gr.Image(
type="pil",
label="Best Matching Candidate",
height=400,
show_download_button=True,
)
gr.Markdown(model_description)
# --- Event Handling ---
submit_btn.click(
fn=search_and_retrieve,
inputs=[image_input, hidden_footprint_text, slider],
outputs=[map_output, image_output],
)
demo.launch(share=True)