Pawel Piwowarski
init commit
0a82b18
import torch
import os
import torchvision.transforms as tfm
import py3_wget
from matching import BaseMatcher, THIRD_PARTY_DIR, WEIGHTS_DIR
from matching.utils import resize_to_divisible, add_to_path
add_to_path(THIRD_PARTY_DIR.joinpath("DeDoDe"))
from DeDoDe import (
dedode_detector_L,
dedode_descriptor_B,
)
add_to_path(THIRD_PARTY_DIR.joinpath("Steerers"))
from rotation_steerers.steerers import DiscreteSteerer, ContinuousSteerer
from rotation_steerers.matchers.max_similarity import (
MaxSimilarityMatcher,
ContinuousMaxSimilarityMatcher,
)
class SteererMatcher(BaseMatcher):
detector_path_L = WEIGHTS_DIR.joinpath("dedode_detector_L.pth")
descriptor_path_G = WEIGHTS_DIR.joinpath("dedode_descriptor_G.pth")
descriptor_path_B_C4 = WEIGHTS_DIR.joinpath("B_C4_Perm_descriptor_setting_C.pth")
descriptor_path_B_SO2 = WEIGHTS_DIR.joinpath("B_SO2_Spread_descriptor_setting_B.pth")
steerer_path_C = WEIGHTS_DIR.joinpath("B_C4_Perm_steerer_setting_C.pth")
steerer_path_B = WEIGHTS_DIR.joinpath("B_SO2_Spread_steerer_setting_B.pth")
dino_patch_size = 14
def __init__(
self,
device="cpu",
max_num_keypoints=2048,
dedode_thresh=0.05,
steerer_type="C8",
*args,
**kwargs,
):
super().__init__(device, **kwargs)
if torch.cuda.is_available() and self.device != "cuda": # only cuda devices work due to autocast in cuda in upstream.
raise ValueError("Only device 'cuda' supported for Steerers.")
WEIGHTS_DIR.mkdir(exist_ok=True)
# download detector
self.download_weights()
self.max_keypoints = max_num_keypoints
self.threshold = dedode_thresh
self.normalize = tfm.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.detector, self.descriptor, self.steerer, self.matcher = self.build_matcher(steerer_type, device=device)
def download_weights(self):
if not os.path.isfile(SteererMatcher.detector_path_L):
print("Downloading dedode_detector_L.pth")
py3_wget.download_file(
"https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_detector_L.pth",
SteererMatcher.detector_path_L,
)
# download descriptors
if not os.path.isfile(SteererMatcher.descriptor_path_G):
print("Downloading dedode_descriptor_G.pth")
py3_wget.download_file(
"https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_descriptor_G.pth",
SteererMatcher.descriptor_path_G,
)
if not os.path.isfile(SteererMatcher.descriptor_path_B_C4):
print("Downloading dedode_descriptor_B_C4.pth")
py3_wget.download_file(
"https://github.com/georg-bn/rotation-steerers/releases/download/release-2/B_C4_Perm_descriptor_setting_C.pth",
SteererMatcher.descriptor_path_B_C4,
)
if not os.path.isfile(SteererMatcher.descriptor_path_B_SO2):
print("Downloading dedode_descriptor_B_S02.pth")
py3_wget.download_file(
"https://github.com/georg-bn/rotation-steerers/releases/download/release-2/B_SO2_Spread_descriptor_setting_B.pth",
SteererMatcher.descriptor_path_B_SO2,
)
# download steerers
if not os.path.isfile(SteererMatcher.steerer_path_C):
print("Downloading B_C4_Perm_steerer_setting_C.pth")
py3_wget.download_file(
"https://github.com/georg-bn/rotation-steerers/releases/download/release-2/B_C4_Perm_steerer_setting_C.pth",
SteererMatcher.steerer_path_C,
)
if not os.path.isfile(SteererMatcher.steerer_path_B):
print("Downloading B_SO2_Spread_steerer_setting_B.pth")
py3_wget.download_file(
"https://github.com/georg-bn/rotation-steerers/releases/download/release-2/B_SO2_Spread_steerer_setting_B.pth",
SteererMatcher.steerer_path_B,
)
def build_matcher(self, steerer_type="C8", device="cpu"):
if steerer_type == "C4":
detector = dedode_detector_L(weights=torch.load(self.detector_path_L, map_location=device))
descriptor = dedode_descriptor_B(weights=torch.load(self.descriptor_path_B_C4, map_location=device))
steerer = DiscreteSteerer(generator=torch.load(self.steerer_path_C, map_location=device))
steerer_order = 4
elif steerer_type == "C8":
detector = dedode_detector_L(weights=torch.load(self.detector_path_L, map_location=device))
descriptor = dedode_descriptor_B(weights=torch.load(self.descriptor_path_B_SO2, map_location=device))
steerer_order = 8
steerer = DiscreteSteerer(
generator=torch.matrix_exp(
(2 * 3.14159 / steerer_order) * torch.load(self.steerer_path_B, map_location=device)
)
)
elif steerer_type == "S02":
descriptor = dedode_descriptor_B(weights=torch.load(self.descriptor_path_B_SO2, map_location=device))
steerer = ContinuousSteerer(generator=torch.load(self.steerer_path_B, map_location=device))
else:
print(f"Steerer type {steerer_type} not yet implemented")
if steerer_type == "SO2":
matcher = ContinuousMaxSimilarityMatcher(steerer=steerer, angles=[0.2, 1.2879, 3.14])
else:
matcher = MaxSimilarityMatcher(steerer=steerer, steerer_order=steerer_order)
return detector, descriptor, steerer, matcher
def preprocess(self, img):
# ensure that the img has the proper w/h to be compatible with patch sizes
_, h, w = img.shape
orig_shape = h, w
img = resize_to_divisible(img, self.dino_patch_size)
img = self.normalize(img).unsqueeze(0).to(self.device)
return img, orig_shape
def _forward(self, img0, img1):
img0, img0_orig_shape = self.preprocess(img0)
img1, img1_orig_shape = self.preprocess(img1)
batch_0 = {"image": img0}
detections_0 = self.detector.detect(batch_0, num_keypoints=self.max_keypoints)
keypoints_0, P_0 = detections_0["keypoints"], detections_0["confidence"]
batch_1 = {"image": img1}
detections_1 = self.detector.detect(batch_1, num_keypoints=self.max_keypoints)
keypoints_1, P_1 = detections_1["keypoints"], detections_1["confidence"]
description_0 = self.descriptor.describe_keypoints(batch_0, keypoints_0)["descriptions"]
description_1 = self.descriptor.describe_keypoints(batch_1, keypoints_1)["descriptions"]
matches_0, matches_1, _ = self.matcher.match(
keypoints_0,
description_0,
keypoints_1,
description_1,
P_A=P_0,
P_B=P_1,
normalize=True,
inv_temp=20,
threshold=self.threshold, # Increasing threshold -> fewer matches, fewer outliers
)
H0, W0, H1, W1 = *img0.shape[-2:], *img1.shape[-2:]
mkpts0, mkpts1 = self.matcher.to_pixel_coords(matches_0, matches_1, H0, W0, H1, W1)
# dedode sometimes requires reshaping an image to fit vit patch size evenly, so we need to
# rescale kpts to the original img
mkpts0 = self.rescale_coords(mkpts0, *img0_orig_shape, H0, W0)
mkpts1 = self.rescale_coords(mkpts1, *img1_orig_shape, H1, W1)
return mkpts0, mkpts1, keypoints_0, keypoints_1, description_0, description_1