|
import torch |
|
from pathlib import Path |
|
import gdown |
|
from copy import deepcopy |
|
import torchvision.transforms as tfm |
|
|
|
|
|
from matching import WEIGHTS_DIR, THIRD_PARTY_DIR, BaseMatcher |
|
from matching.utils import to_numpy, resize_to_divisible, add_to_path |
|
|
|
add_to_path(THIRD_PARTY_DIR.joinpath("EfficientLoFTR"), insert=0) |
|
|
|
from src.loftr import LoFTR, full_default_cfg, opt_default_cfg, reparameter |
|
|
|
|
|
class EfficientLoFTRMatcher(BaseMatcher): |
|
weights_src = "https://drive.google.com/file/d/1jFy2JbMKlIp82541TakhQPaoyB5qDeic/view" |
|
model_path = WEIGHTS_DIR.joinpath("eloftr_outdoor.ckpt") |
|
divisible_size = 32 |
|
|
|
def __init__(self, device="cpu", cfg="full", **kwargs): |
|
super().__init__(device, **kwargs) |
|
|
|
self.precision = kwargs.get("precision", self.get_precision()) |
|
|
|
self.download_weights() |
|
|
|
self.matcher = LoFTR(config=deepcopy(full_default_cfg if cfg == "full" else opt_default_cfg)) |
|
|
|
self.matcher.load_state_dict(torch.load(self.model_path, map_location=torch.device("cpu"))["state_dict"]) |
|
self.matcher = reparameter(self.matcher).to(self.device).eval() |
|
|
|
def get_precision(self): |
|
return "fp16" |
|
|
|
def download_weights(self): |
|
if not Path(EfficientLoFTRMatcher.model_path).is_file(): |
|
print("Downloading eLoFTR outdoor... (takes a while)") |
|
gdown.download( |
|
EfficientLoFTRMatcher.weights_src, |
|
output=str(EfficientLoFTRMatcher.model_path), |
|
fuzzy=True, |
|
) |
|
|
|
def preprocess(self, img): |
|
_, h, w = img.shape |
|
orig_shape = h, w |
|
img = resize_to_divisible(img, self.divisible_size) |
|
return tfm.Grayscale()(img).unsqueeze(0), orig_shape |
|
|
|
def _forward(self, img0, img1): |
|
img0, img0_orig_shape = self.preprocess(img0) |
|
img1, img1_orig_shape = self.preprocess(img1) |
|
|
|
batch = {"image0": img0, "image1": img1} |
|
if self.precision == "mp" and self.device == "cuda": |
|
with torch.autocast(enabled=True, device_type="cuda"): |
|
self.matcher(batch) |
|
else: |
|
self.matcher(batch) |
|
|
|
mkpts0 = to_numpy(batch["mkpts0_f"]) |
|
mkpts1 = to_numpy(batch["mkpts1_f"]) |
|
|
|
H0, W0, H1, W1 = *img0.shape[-2:], *img1.shape[-2:] |
|
mkpts0 = self.rescale_coords(mkpts0, *img0_orig_shape, H0, W0) |
|
mkpts1 = self.rescale_coords(mkpts1, *img1_orig_shape, H1, W1) |
|
|
|
return mkpts0, mkpts1, None, None, None, None |
|
|