Pawel Piwowarski
init commit
0a82b18
import sys
import numpy as np
from pathlib import Path
import os
import torchvision.transforms as tfm
import py3_wget
from matching.utils import add_to_path, resize_to_divisible
from matching import WEIGHTS_DIR, THIRD_PARTY_DIR, BaseMatcher
add_to_path(THIRD_PARTY_DIR.joinpath("duster"))
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid
class Dust3rMatcher(BaseMatcher):
model_path = WEIGHTS_DIR.joinpath("duster_vit_large.pth")
vit_patch_size = 16
def __init__(self, device="cpu", *args, **kwargs):
super().__init__(device, **kwargs)
self.normalize = tfm.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
self.verbose = False
self.download_weights()
self.model = AsymmetricCroCo3DStereo.from_pretrained(self.model_path).to(device)
@staticmethod
def download_weights():
url = "https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth"
if not os.path.isfile(Dust3rMatcher.model_path):
print("Downloading Dust3r(ViT large)... (takes a while)")
py3_wget.download_file(url, Dust3rMatcher.model_path)
def preprocess(self, img):
_, h, w = img.shape
orig_shape = h, w
img = resize_to_divisible(img, self.vit_patch_size)
img = self.normalize(img).unsqueeze(0)
return img, orig_shape
def _forward(self, img0, img1):
img0, img0_orig_shape = self.preprocess(img0)
img1, img1_orig_shape = self.preprocess(img1)
images = [
{"img": img0, "idx": 0, "instance": 0},
{"img": img1, "idx": 1, "instance": 1},
]
pairs = make_pairs(images, scene_graph="complete", prefilter=None, symmetrize=True)
output = inference(pairs, self.model, self.device, batch_size=1, verbose=self.verbose)
scene = global_aligner(
output,
device=self.device,
mode=GlobalAlignerMode.PairViewer,
verbose=self.verbose,
)
# retrieve useful values from scene:
confidence_masks = scene.get_masks()
pts3d = scene.get_pts3d()
imgs = scene.imgs
pts2d_list, pts3d_list = [], []
for i in range(2):
conf_i = confidence_masks[i].cpu().numpy()
pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i]) # imgs[i].shape[:2] = (H, W)
pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])
# return if there is no 3d points found on either one of the image
if pts3d_list[0].shape[0] == 0 or pts3d_list[1].shape[0] == 0:
return np.empty((0,2)), np.empty((0,2)), None, None, None, None
reciprocal_in_P2, nn2_in_P1, _ = find_reciprocal_matches(*pts3d_list)
mkpts1 = pts2d_list[1][reciprocal_in_P2]
mkpts0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2]
# duster sometimes requires reshaping an image to fit vit patch size evenly, so we need to
# rescale kpts to the original img
H0, W0, H1, W1 = *img0.shape[-2:], *img1.shape[-2:]
mkpts0 = self.rescale_coords(mkpts0, *img0_orig_shape, H0, W0)
mkpts1 = self.rescale_coords(mkpts1, *img1_orig_shape, H1, W1)
return mkpts0, mkpts1, None, None, None, None