|
import os |
|
import torch |
|
import py3_wget |
|
from pathlib import Path |
|
import torchvision.transforms as tfm |
|
from kornia.feature import DeDoDe |
|
import kornia |
|
|
|
from matching import get_version, THIRD_PARTY_DIR, WEIGHTS_DIR, BaseMatcher |
|
from matching.utils import add_to_path, resize_to_divisible |
|
|
|
add_to_path(THIRD_PARTY_DIR.joinpath("DeDoDe")) |
|
|
|
from DeDoDe import dedode_detector_L, dedode_descriptor_G |
|
from DeDoDe.matchers.dual_softmax_matcher import DualSoftMaxMatcher |
|
|
|
|
|
class DedodeMatcher(BaseMatcher): |
|
detector_path = WEIGHTS_DIR.joinpath("dedode_detector_L.pth") |
|
detector_v2_path = WEIGHTS_DIR.joinpath("dedode_detector_L_v2.pth") |
|
descriptor_path = WEIGHTS_DIR.joinpath("dedode_descriptor_G.pth") |
|
dino_patch_size = 14 |
|
|
|
def __init__(self, device="cpu", max_num_keypoints=2048, dedode_thresh=0.05, detector_version=2, *args, **kwargs): |
|
super().__init__(device, **kwargs) |
|
|
|
if self.device != "cuda": |
|
raise ValueError("Only device 'cuda' supported for DeDoDe.") |
|
|
|
self.max_keypoints = max_num_keypoints |
|
self.threshold = dedode_thresh |
|
self.normalize = tfm.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) |
|
|
|
self.download_weights() |
|
|
|
detector_weight_path = self.detector_path if detector_version == 1 else self.detector_v2_path |
|
self.detector = dedode_detector_L(weights=torch.load(detector_weight_path, map_location=device), device=device) |
|
self.descriptor = dedode_descriptor_G( |
|
weights=torch.load(self.descriptor_path, map_location=device), device=device |
|
) |
|
self.matcher = DualSoftMaxMatcher() |
|
|
|
@staticmethod |
|
def download_weights(): |
|
detector_url = ( |
|
"https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_detector_L.pth" |
|
) |
|
detector_v2_url = "https://github.com/Parskatt/DeDoDe/releases/download/v2/dedode_detector_L_v2.pth" |
|
descr_url = ( |
|
"https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_descriptor_G.pth" |
|
) |
|
os.makedirs("model_weights", exist_ok=True) |
|
if not os.path.isfile(DedodeMatcher.detector_path): |
|
print("Downloading dedode_detector_L.pth") |
|
py3_wget.download_file(detector_url, DedodeMatcher.detector_path) |
|
|
|
if not os.path.isfile(DedodeMatcher.detector_v2_path): |
|
print("Downloading dedode_descriptor_L-v2.pth") |
|
py3_wget.download_file(detector_v2_url, DedodeMatcher.detector_v2_path) |
|
|
|
if not os.path.isfile(DedodeMatcher.descriptor_path): |
|
print("Downloading dedode_descriptor_G.pth") |
|
py3_wget.download_file(descr_url, DedodeMatcher.descriptor_path) |
|
|
|
def preprocess(self, img): |
|
|
|
_, h, w = img.shape |
|
orig_shape = h, w |
|
img = resize_to_divisible(img, self.dino_patch_size) |
|
|
|
img = self.normalize(img).unsqueeze(0).to(self.device) |
|
return img, orig_shape |
|
|
|
def _forward(self, img0, img1): |
|
img0, img0_orig_shape = self.preprocess(img0) |
|
img1, img1_orig_shape = self.preprocess(img1) |
|
|
|
batch_0 = {"image": img0} |
|
detections_0 = self.detector.detect(batch_0, num_keypoints=self.max_keypoints) |
|
keypoints_0, P_0 = detections_0["keypoints"], detections_0["confidence"] |
|
|
|
batch_1 = {"image": img1} |
|
detections_1 = self.detector.detect(batch_1, num_keypoints=self.max_keypoints) |
|
keypoints_1, P_1 = detections_1["keypoints"], detections_1["confidence"] |
|
|
|
description_0 = self.descriptor.describe_keypoints(batch_0, keypoints_0)["descriptions"] |
|
description_1 = self.descriptor.describe_keypoints(batch_1, keypoints_1)["descriptions"] |
|
|
|
matches_0, matches_1, _ = self.matcher.match( |
|
keypoints_0, |
|
description_0, |
|
keypoints_1, |
|
description_1, |
|
P_A=P_0, |
|
P_B=P_1, |
|
normalize=True, |
|
inv_temp=20, |
|
threshold=self.threshold, |
|
) |
|
|
|
H0, W0, H1, W1 = *img0.shape[-2:], *img1.shape[-2:] |
|
mkpts0, mkpts1 = self.matcher.to_pixel_coords(matches_0, matches_1, H0, W0, H1, W1) |
|
|
|
keypoints_0, keypoints_1 = self.matcher.to_pixel_coords( |
|
keypoints_0.squeeze(0), keypoints_1.squeeze(0), H0, W0, H1, W1 |
|
) |
|
|
|
|
|
|
|
keypoints_0 = self.rescale_coords(keypoints_0, *img0_orig_shape, H0, W0) |
|
keypoints_1 = self.rescale_coords(keypoints_1, *img1_orig_shape, H1, W1) |
|
|
|
mkpts0 = self.rescale_coords(mkpts0, *img0_orig_shape, H0, W0) |
|
mkpts1 = self.rescale_coords(mkpts1, *img1_orig_shape, H1, W1) |
|
|
|
return mkpts0, mkpts1, keypoints_0, keypoints_1, description_0.squeeze(0), description_1.squeeze(0) |
|
|
|
|
|
class DedodeKorniaMatcher(BaseMatcher): |
|
def __init__( |
|
self, |
|
device="cpu", |
|
max_num_keypoints=2048, |
|
detector_weights="L-C4-v2", |
|
descriptor_weights="G-C4", |
|
match_thresh=0.05, |
|
*args, |
|
**kwargs, |
|
): |
|
super().__init__(device, **kwargs) |
|
|
|
major, minor, patch = get_version(kornia) |
|
assert major > 1 or ( |
|
minor >= 7 and patch >= 3 |
|
), "DeDoDeKornia only available in kornia v 0.7.3 or greater. Update kornia to use this model." |
|
|
|
self.max_keypoints = max_num_keypoints |
|
|
|
self.model = DeDoDe.from_pretrained( |
|
detector_weights=detector_weights, |
|
descriptor_weights=descriptor_weights, |
|
amp_dtype=torch.float32 if device != "cuda" else torch.float16, |
|
) |
|
self.model.to(device) |
|
self.matcher = DualSoftMaxMatcher() |
|
|
|
self.threshold = match_thresh |
|
|
|
def preprocess(self, img): |
|
if img.ndim == 3: |
|
return img[None] |
|
else: |
|
return img |
|
|
|
@torch.inference_mode() |
|
def _forward(self, img0, img1): |
|
img0 = self.preprocess(img0) |
|
img1 = self.preprocess(img1) |
|
|
|
keypoints_0, P_0, description_0 = self.model(img0, n=self.max_keypoints) |
|
keypoints_1, P_1, description_1 = self.model(img1, n=self.max_keypoints) |
|
|
|
mkpts0, mkpts1, _ = self.matcher.match( |
|
keypoints_0, |
|
description_0, |
|
keypoints_1, |
|
description_1, |
|
P_A=P_0, |
|
P_B=P_1, |
|
normalize=True, |
|
inv_temp=20, |
|
threshold=self.threshold, |
|
) |
|
|
|
return mkpts0, mkpts1, keypoints_0, keypoints_1, description_0, description_1 |
|
|