|
import torch |
|
from pathlib import Path |
|
import gdown |
|
import torchvision.transforms as tfm |
|
import tarfile |
|
|
|
from matching import WEIGHTS_DIR, THIRD_PARTY_DIR, BaseMatcher |
|
from matching.utils import to_numpy, resize_to_divisible, lower_config, add_to_path |
|
|
|
BASE_PATH = THIRD_PARTY_DIR.joinpath("aspanformer") |
|
add_to_path(BASE_PATH) |
|
|
|
from src.ASpanFormer.aspanformer import ASpanFormer |
|
from src.config.default import get_cfg_defaults as aspan_cfg_defaults |
|
|
|
|
|
class AspanformerMatcher(BaseMatcher): |
|
weights_src = "https://drive.google.com/file/d/1eavM9dTkw9nbc-JqlVVfGPU5UvTTfc6k/view" |
|
weights_path = WEIGHTS_DIR.joinpath("aspanformer", "weights", "outdoor.ckpt") |
|
divisible_size = 32 |
|
|
|
def __init__(self, device="cpu", **kwargs): |
|
super().__init__(device, **kwargs) |
|
|
|
self.download_weights() |
|
|
|
config = aspan_cfg_defaults() |
|
config.merge_from_file(BASE_PATH.joinpath("configs", "aspan", "outdoor", "aspan_test.py")) |
|
self.matcher = ASpanFormer(config=lower_config(config)["aspan"]) |
|
|
|
self.matcher.load_state_dict( |
|
torch.load(self.weights_path, map_location=self.device)["state_dict"], strict=False |
|
) |
|
|
|
self.matcher = self.matcher.to(device).eval() |
|
|
|
def download_weights(self): |
|
if not Path(self.weights_path).is_file(): |
|
print("Downloading Aspanformer outdoor... (takes a while)") |
|
gdown.download( |
|
self.weights_src, |
|
output=str(WEIGHTS_DIR.joinpath("weights_aspanformer.tar")), |
|
fuzzy=True, |
|
) |
|
tar = tarfile.open(WEIGHTS_DIR.joinpath("weights_aspanformer.tar")) |
|
weights_subdir = WEIGHTS_DIR.joinpath("aspanformer") |
|
weights_subdir.mkdir(exist_ok=True) |
|
tar.extractall(weights_subdir) |
|
tar.close() |
|
|
|
def preprocess(self, img): |
|
_, h, w = img.shape |
|
orig_shape = h, w |
|
img = resize_to_divisible(img, self.divisible_size) |
|
return tfm.Grayscale()(img).unsqueeze(0), orig_shape |
|
|
|
def _forward(self, img0, img1): |
|
img0, img0_orig_shape = self.preprocess(img0) |
|
img1, img1_orig_shape = self.preprocess(img1) |
|
|
|
batch = {"image0": img0, "image1": img1} |
|
self.matcher(batch) |
|
|
|
mkpts0 = to_numpy(batch["mkpts0_f"]) |
|
mkpts1 = to_numpy(batch["mkpts1_f"]) |
|
|
|
H0, W0, H1, W1 = *img0.shape[-2:], *img1.shape[-2:] |
|
mkpts0 = self.rescale_coords(mkpts0, *img0_orig_shape, H0, W0) |
|
mkpts1 = self.rescale_coords(mkpts1, *img1_orig_shape, H1, W1) |
|
|
|
return mkpts0, mkpts1, None, None, None, None |
|
|