File size: 7,763 Bytes
0a82b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import torch
import py3_wget
import gdown
from kornia.color import rgb_to_grayscale
from matching import WEIGHTS_DIR, THIRD_PARTY_DIR, BaseMatcher
from matching.utils import load_module, add_to_path
BASE_PATH = THIRD_PARTY_DIR.joinpath("gim")
add_to_path(BASE_PATH)
from dkm.models.model_zoo.DKMv3 import DKMv3
class GIM_DKM(BaseMatcher):
weights_src = "https://drive.google.com/file/d/1gk97V4IROnR1Nprq10W9NCFUv2mxXR_-/view"
def __init__(self, device="cpu", max_num_keypoints=5000, **kwargs):
super().__init__(device, **kwargs)
self.ckpt_path = WEIGHTS_DIR / "gim_dkm_100h.ckpt"
self.model = DKMv3(weights=None, h=672, w=896)
self.max_num_keypoints = max_num_keypoints
self.download_weights()
self.load_weights()
self.model = self.model.eval().to(device)
def download_weights(self):
if not self.ckpt_path.exists():
print(f"Downloading {self.ckpt_path.name}")
gdown.download(GIM_DKM.weights_src, output=str(self.ckpt_path), fuzzy=True)
def load_weights(self):
state_dict = torch.load(self.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("model."):
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
if "encoder.net.fc" in k:
state_dict.pop(k)
self.model.load_state_dict(state_dict)
def preprocess(self, img):
# this version of DKM requires PIL images as input
# return Image.fromarray(np.uint8(255*tensor_to_image(img)))
if img.ndim < 4:
img = img.unsqueeze(0)
return img
def _forward(self, img0, img1):
height0, width0 = img0.shape[-2:]
height1, width1 = img1.shape[-2:]
img0 = self.preprocess(img0) # now as PIL img
img1 = self.preprocess(img1) # now as PIL img
dense_matches, dense_certainty = self.model.match(img0, img1, device=self.device)
torch.cuda.empty_cache()
# sample matching keypoints from dense warp
sparse_matches, mconf = self.model.sample(dense_matches, dense_certainty, self.max_num_keypoints)
torch.cuda.empty_cache()
mkpts0 = sparse_matches[:, :2]
mkpts1 = sparse_matches[:, 2:]
# convert to px coords
mkpts0 = torch.stack(
(width0 * (mkpts0[:, 0] + 1) / 2, height0 * (mkpts0[:, 1] + 1) / 2),
dim=-1,
)
mkpts1 = torch.stack(
(width1 * (mkpts1[:, 0] + 1) / 2, height1 * (mkpts1[:, 1] + 1) / 2),
dim=-1,
)
# b_ids = torch.where(mconf[None])[0]
return mkpts0, mkpts1, None, None, None, None
class GIM_LG(BaseMatcher):
weights_src = "https://github.com/xuelunshen/gim/blob/main/weights/gim_lightglue_100h.ckpt"
superpoint_v1_weight_src = (
"https://github.com/magicleap/SuperGluePretrainedNetwork/raw/master/models/weights/superpoint_v1.pth"
)
def __init__(self, device="cpu", max_keypoints=2048, **kwargs):
super().__init__(device, **kwargs)
# load the altered version of gluefactory
load_module("gluefactory_gim", BASE_PATH.joinpath("gluefactory/__init__.py"))
from gluefactory_gim.superpoint import SuperPoint
from gluefactory_gim.models.matchers.lightglue import LightGlue
self.ckpt_path = BASE_PATH / "weights" / "gim_lightglue_100h.ckpt"
self.superpoint_v1_path = BASE_PATH / "weights" / "superpoint_v1.pth"
self.download_weights()
self.detector = SuperPoint(
{
"max_num_keypoints": max_keypoints,
"force_num_keypoints": True,
"detection_threshold": 0.0,
"nms_radius": 3,
"trainable": False,
}
)
self.model = LightGlue(
{
"filter_threshold": 0.1,
"flash": False,
"checkpointed": True,
}
)
self.load_weights()
def download_weights(self):
if not self.ckpt_path.exists():
print(f"Downloading {self.ckpt_path.name}")
py3_wget.download_file(GIM_LG.weights_src, self.ckpt_path)
if not self.superpoint_v1_path.exists():
print(f"Downloading {self.superpoint_v1_path.name}")
py3_wget.download_file(GIM_LG.superpoint_v1_weight_src, self.superpoint_v1_path)
def load_weights(self):
state_dict = torch.load(self.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("model."):
state_dict.pop(k)
if k.startswith("superpoint."):
state_dict[k.replace("superpoint.", "", 1)] = state_dict.pop(k)
self.detector.load_state_dict(state_dict)
state_dict = torch.load(self.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
for k in list(state_dict.keys()):
if k.startswith("superpoint."):
state_dict.pop(k)
if k.startswith("model."):
state_dict[k.replace("model.", "", 1)] = state_dict.pop(k)
self.model.load_state_dict(state_dict)
self.detector = self.detector.eval().to(self.device)
self.model = self.model.eval().to(self.device)
def preprocess(self, img):
# convert to grayscale
return rgb_to_grayscale(img.unsqueeze(0))
def _forward(self, img0, img1):
img0 = self.preprocess(img0)
img1 = self.preprocess(img1)
data = dict(image0=img0, image1=img1)
scale0 = torch.tensor([1.0, 1.0]).to(self.device)[None]
scale1 = torch.tensor([1.0, 1.0]).to(self.device)[None]
size0 = torch.tensor(data["image0"].shape[-2:][::-1])[None]
size1 = torch.tensor(data["image1"].shape[-2:][::-1])[None]
data.update(dict(size0=size0, size1=size1))
data.update(dict(scale0=scale0, scale1=scale1))
pred = {}
pred.update(
{
k + "0": v
for k, v in self.detector(
{
"image": data["image0"],
"image_size": data["size0"],
}
).items()
}
)
pred.update(
{
k + "1": v
for k, v in self.detector(
{
"image": data["image1"],
"image_size": data["size1"],
}
).items()
}
)
pred.update(self.model({**pred, **data, **{"resize0": data["size0"], "resize1": data["size1"]}}))
kpts0 = torch.cat([kp * s for kp, s in zip(pred["keypoints0"], data["scale0"][:, None])])
kpts1 = torch.cat([kp * s for kp, s in zip(pred["keypoints1"], data["scale1"][:, None])])
desc0, desc1 = pred["descriptors0"], pred["descriptors1"]
m_bids = torch.nonzero(pred["keypoints0"].sum(dim=2) > -1)[:, 0]
matches = pred["matches"]
bs = data["image0"].size(0)
mkpts0 = torch.cat([kpts0[m_bids == b_id][matches[b_id][..., 0]] for b_id in range(bs)])
mkpts1 = torch.cat([kpts1[m_bids == b_id][matches[b_id][..., 1]] for b_id in range(bs)])
# b_ids = torch.cat([m_bids[m_bids == b_id][matches[b_id][..., 0]] for b_id in range(bs)])
# mconf = torch.cat(pred['scores'])
return mkpts0, mkpts1, kpts0, kpts1, desc0, desc1
|