File size: 23,285 Bytes
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b3b1fd
0a82b18
5b3b1fd
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a106d
 
 
0a82b18
 
 
 
 
 
 
b345965
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a106d
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b3b1fd
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b3b1fd
 
 
 
 
 
 
 
 
 
 
 
 
0a82b18
 
 
 
 
 
 
 
5b3b1fd
0a82b18
 
 
 
 
 
 
 
 
 
5b3b1fd
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b3b1fd
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b3b1fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import gradio as gr
import torch
import faiss
import numpy as np
import pandas as pd
import folium
from PIL import Image
from pathlib import Path
import torchvision.transforms as tfm
from torchvision.transforms import functional as F
import logging
import sys
import io
import base64
import random
import ast
import webdataset as wds
import os
import pickle
from functools import lru_cache
import tarfile
from huggingface_hub import hf_hub_download, snapshot_download

from models.apl_model_dinov2 import DINOv2FeatureExtractor

sys.path.append(str(Path("image-matching-models")))
sys.path.append(str(Path("image-matching-models/matching/third_party")))

import util_matching
from matching import get_matcher

logging.basicConfig(level=logging.INFO)


HF_TOKEN = os.getenv("HF_TOKEN")  # Set this as a secret in your Space


def ensure_files_exist():

    Path("./faiss_index").mkdir(exist_ok=True)
    Path("./data/webdataset_shards").mkdir(parents=True, exist_ok=True)
    """Check for required files and download if missing"""
    # 1. Check FAISS index
    if not Path("faiss_index/faiss_index_2021.bin").exists():
        print("Downloading FAISS index...")

        hf_hub_download(
            repo_id='pawlo2013/EarthLoc2_FAISS',
            filename="faiss_index.bin",
            local_dir="./faiss_index",
            token=HF_TOKEN,
            repo_type="dataset"
        )
    
    # 2. Check WebDataset shards
    shard_dir = Path("data/webdataset_shards")
    required_shards = [f"shard-{i:06d}.tar" for i in range(11)]  # Adjust range as needed
    required_indices = [f"{s}.index" for s in required_shards]
    
    missing_files = [
        f for f in required_shards + required_indices 
        if not (shard_dir / f).exists()
    ]
    
    if missing_files:
        print(f"Downloading {len(missing_files)} missing shard files...")
        snapshot_download(
            repo_id="pawlo2013/EarthLoc_2021_Database",
            local_dir=shard_dir,
            allow_patterns="*.tar*",  # Gets both .tar and .tar.index
            token=HF_TOKEN,
            repo_type="dataset"
        )

# --- Integration Point ---
# Call this BEFORE loading any models or datasets
ensure_files_exist()



# --- Paths and device ---
MODEL_CHECKPOINT_PATH = Path("weights/best_model_95.6.torch")
FAISS_INDEX_PATH = Path("faiss_index/faiss_index.bin")
CSV_MAPPING_PATH = Path("faiss_index/faiss_index_webdataset.csv")  # Updated CSV with shards

DEVICE = "cpu"
MATCHING_IMG_SIZE = 512
logging.info(f"Using device: {DEVICE}")

for path, desc in [
    (MODEL_CHECKPOINT_PATH, "Model checkpoint"),
    (FAISS_INDEX_PATH, "FAISS index"),
    (CSV_MAPPING_PATH, "Path mapping CSV"),
]:
    if not path.exists():
        raise FileNotFoundError(f"{desc} not found at: {path}")

MODEL_NAME = "xfeat_steerers"
matcher = get_matcher(MODEL_NAME, device=DEVICE, max_num_keypoints=2048)
if MODEL_NAME == "xfeat_steerers":
    matcher.model.dev = DEVICE

# Load mapping CSV with keys and shard paths
mapping_df = pd.read_csv(CSV_MAPPING_PATH, index_col="faiss_index")
parsed = mapping_df["key"].str.extract(r"@(?P<z>\d{1,2})_(?P<r>\d{1,5})_(?P<c>\d{1,5})@").astype("int32")
mapping_df = mapping_df.join(parsed)



logging.info(f"Loaded mapping CSV with {len(mapping_df)} entries.")

# Cache for opened shards: {shard_path: WebDataset object}
shard_cache = {}

def get_shard_dataset(shard_path):
    """Load or get cached WebDataset for a shard path."""
    if shard_path not in shard_cache:
        shard_cache[shard_path] = wds.WebDataset(shard_path, handler=wds.warn_and_continue)
    return shard_cache[shard_path]

@lru_cache(maxsize=100)
def load_index(index_path):
    with open(index_path, "rb") as f:
        return pickle.load(f)

def load_image_from_shard(key):
    row = mapping_df[mapping_df["key"] == key]
    if row.empty:
        return None
    
    shard_path = row.iloc[0]["shard_path"]
    index_path = shard_path + ".index"
    
    if not os.path.exists(index_path):
        return _load_via_linear_scan(shard_path, key)  # Fallback
    
    try:
        index = load_index(index_path)
        offset = index.get(key)
        if offset is None:
            return None
            
        with open(shard_path, "rb") as f:
            f.seek(offset)
            with tarfile.open(fileobj=f) as tar:
                member = tar.next()
                if member and member.name.startswith(key):
                    jpg_file = tar.extractfile(member)
                    return Image.open(io.BytesIO(jpg_file.read())).convert("RGB")
        return None
    except Exception as e:
        logging.error(f"Error loading {key}: {str(e)}")
        return _load_via_linear_scan(shard_path, key)  # Fallback on error

# Fallback linear scan (original method)
def _load_via_linear_scan(shard_path, key):
    dataset = get_shard_dataset(shard_path)
    for sample in dataset:
        if sample["__key__"] == key:
            if img_bytes := sample.get("jpg"):
                return Image.open(io.BytesIO(img_bytes)).convert("RGB")
    return None

def pil_to_base64(image):
    """Convert a PIL image to a base64-encoded string for HTML embedding."""
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return f"data:image/png;base64,{img_str}"

def create_map(
    final_footprint, candidate_num, filename, inliers, query_footprint=None
):
    """
    Create and return a Folium map (as HTML string) showing the final footprint (blue)
    and optionally the query's ground truth footprint (orange).
    """
    if final_footprint:
        center = final_footprint[0]
        zoom = 10
    elif query_footprint:
        center = query_footprint[0]
        zoom = 10
    else:
        center = [0, 0]
        zoom = 2

    m = folium.Map(location=center, zoom_start=zoom)

    if query_footprint:
        folium.Polygon(
            locations=query_footprint,
            popup="Ground Truth Query Footprint",
            color="orange",
            fill=True,
            fill_color="orange",
            fill_opacity=0.4,
        ).add_to(m)

    if final_footprint:
        footprint_text = "\n".join(
            [f"({lat:.4f}, {lon:.4f})" for lat, lon in final_footprint]
        )
        popup_text = (
            f"Predicted Footprint:<br>{footprint_text}<br><br>"
            f"Candidate: {candidate_num}<br>Inliers: {inliers}"
        )

        folium.Polygon(
            locations=final_footprint,
            popup=popup_text,
            color="blue",
            fill=True,
            fill_color="cyan",
            fill_opacity=0.5,
        ).add_to(m)

        folium.Marker(
            location=[final_footprint[0][0], final_footprint[0][1]],
            popup=f"Footprint Coordinates:<br>{footprint_text}",
            icon=folium.Icon(color="blue"),
        ).add_to(m)
    elif not query_footprint:
        folium.Marker(
            location=[0, 0],
            popup="No valid location found.",
            icon=folium.Icon(color="red"),
        ).add_to(m)

    return m._repr_html_()

def parse_zoom_row_col_from_key(key: str):
    """
    Extract zoom, row, col from the complex key string.
    The key format is like:
    2021_10_30_90_@34,30714@92,81250@35,46067@92,81250@35,46067@94,21875@34,30714@94,21875@10_0404_0776@2021@34,88391@93,51562@16489@0@
    
    The zoom, row, col are expected to be in the last underscore-separated fields,
    specifically the last three fields before the final '@' or at the end.
    
    This function tries to extract zoom, row, col as integers.
    """
    try:
        # Split by underscore
        parts = util_matching.get_image_metadata_from_path(key)
        

        image_id_str = parts[9]  # 9th field: image_id

        parts = image_id_str.split("_")
        zoom = int(parts[0])
        row = int(parts[1])
        col = int(parts[2])
        

        return zoom, row, col
    except Exception as e:
        raise ValueError(f"Failed to parse zoom,row,col from key: {key}") from e


def get_surrounding_tiles_sharded(candidate_key, zoom):
    """
    Given a candidate key, find all keys in mapping_df with the same zoom,
    and row/col within Β±4 offsets, then load images from shards.
    Return list of (img, (row, col), key) sorted by row, col.
    """
    try:
        zoom, row, col = parse_zoom_row_col_from_key(candidate_key)
    except Exception as e:
        logging.warning(f"Failed to parse candidate key {candidate_key}: {e}")
        return []

    row_offsets = [-4, 0, 4]
    col_offsets = [-4, 0, 4]

    desired_rows = {row + r for r in row_offsets}
    desired_cols = {col + c for c in col_offsets}



    # ── 2.  Vectorised filter ──────────────────────────────────────────────────────
    mask = (
    (mapping_df["z"] == zoom) &
    (mapping_df["r"].isin(desired_rows)) &
    (mapping_df["c"].isin(desired_cols))
    )

    matched_rows = mapping_df[mask]

    tiles = []
    seen_positions = set()  # Track (row, col) to avoid duplicates

    for _, row_data in matched_rows.iterrows():
        k = row_data["key"]
        try:
            _, r, c = parse_zoom_row_col_from_key(k)
        except Exception:
            continue

        if (r, c) in seen_positions:
            continue  # Skip duplicate position

        img = load_image_from_shard(k)
        if img is not None:
            tiles.append((img, (r, c), k))
            seen_positions.add((r, c))

    tiles.sort(key=lambda t: (t[1][0], t[1][1]))
    return tiles

def compose_tiles_ordered_sharded(tiles, tile_size, candidate_indices):
    """
    Compose a 3x3 grid image from tiles loaded from shards.
    Missing tiles replaced with blank.
    """
    candidate_row, candidate_col = candidate_indices
    grid_img = Image.new("RGB", (tile_size[0] * 3, tile_size[1] * 3))
    blank = Image.new("RGB", tile_size, color=(0, 0, 0))

    tile_dict = {(rc[0], rc[1]): img for img, rc, key in tiles if img is not None}

    for i, row_offset in enumerate([-4, 0, 4]):
        for j, col_offset in enumerate([-4, 0, 4]):
            desired_row = candidate_row + row_offset
            desired_col = candidate_col + col_offset
            img = tile_dict.get((desired_row, desired_col), blank)

            if img.mode != "RGB":
                img = img.convert("RGB")

            img_resized = tfm.Resize(tile_size, antialias=True)(img).copy()

  

            grid_img.paste(img_resized, (j * tile_size[0], i * tile_size[1]))
    return grid_img

def run_matching(query_image, candidate_image, base_footprint):
    local_fm = None
    viz_params = None

    for iteration in range(4):
        (
            num_inliers,
            local_fm,
            predicted_footprint,
            pretty_footprint,
        ) = util_matching.estimate_footprint(
            local_fm,
            query_image,
            candidate_image,
            matcher,
            base_footprint,
            HW=MATCHING_IMG_SIZE,
            viz_params=viz_params,
        )

        if num_inliers == -1 or num_inliers is None:
            return -1, []

    if hasattr(predicted_footprint, "tolist"):
        best_footprint = predicted_footprint.tolist()
    else:
        best_footprint = predicted_footprint

    return num_inliers, best_footprint

# --- Load assets ---

logging.info("Loading assets. This may take a moment...")

try:
    model = DINOv2FeatureExtractor(
        model_type="vit_base_patch14_reg4_dinov2.lvd142m",
        num_of_layers_to_unfreeze=0,
        desc_dim=768,
        aggregator_type="SALAD",
    )
    logging.info(f"Loading model checkpoint from {MODEL_CHECKPOINT_PATH}...")
    model_state_dict = torch.load(MODEL_CHECKPOINT_PATH, map_location=DEVICE)
    model.load_state_dict(model_state_dict)
    model = model.to(DEVICE)
    model.eval()
    logging.info("DINOv2 model and checkpoint loaded successfully.")
except Exception as e:
    logging.error(f"Failed to load the model: {e}")
    raise

faiss_index = faiss.read_index(str(FAISS_INDEX_PATH))
num_db_images = faiss_index.ntotal // 4
logging.info(
    f"FAISS index loaded. Contains {faiss_index.ntotal} vectors for {num_db_images} unique images."
)

image_transform = tfm.Compose(
    [
        tfm.Resize((model.image_size, model.image_size), antialias=True),
        tfm.ToTensor(),
        tfm.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
        ),
    ]
)
logging.info("Assets loaded. Gradio app is ready.")

# --- Core app logic ---

def search_and_retrieve(
    query_image: Image.Image, query_footprint_str: str, num_results: int
):
    progress = gr.Progress()
    query_footprint = None
    if query_footprint_str:
        try:
            print(query_footprint_str)
            query_footprint = ast.literal_eval(query_footprint_str)
            
            query_footprint = [list(coord) for coord in query_footprint]
        except (ValueError, SyntaxError):
            logging.warning("Could not parse query footprint string.")
            query_footprint = None

    if query_image is None:
        yield create_map(None, None, None, None), None
        return

    progress(0.1, desc="Preprocessing query")
    if query_image.mode == "RGBA":
        query_image = query_image.convert("RGB")

    image_tensor = image_transform(query_image).to(DEVICE)
    with torch.no_grad():
        descriptor = model(image_tensor.unsqueeze(0))
    descriptor_np = descriptor.cpu().numpy()


    progress(0.2, desc=f"Searching database for {num_results} neighbors")
    distances, indices = faiss_index.search(descriptor_np, num_results)
    flat_indices = indices.flatten()

    global_best_inliers = -1
    global_best_footprint = None
    global_candidate_num = None
    global_filename = None
    global_best_display_image = None

    candidate_infos = []
    processed_image_indices = set()

    query_tensor = tfm.ToTensor()(
        tfm.Resize((MATCHING_IMG_SIZE, MATCHING_IMG_SIZE), antialias=True)(query_image)
    )

    


    progress(0.4, desc="Processing candidates")
    for faiss_idx in flat_indices:

        image_index = faiss_idx % num_db_images

    
        best_rotation_index = faiss_idx // num_db_images
        query_tensor = F.rotate(query_tensor, [0, -90, -180, -270][best_rotation_index] ) 

        if image_index in processed_image_indices:
            continue

        processed_image_indices.add(image_index)
        candidate_num = len(candidate_infos) + 1

        try:
            candidate_row = mapping_df.loc[int(image_index)]
        except Exception as e:
            logging.warning(f"Failed to get candidate info for index {image_index}: {e}")
            continue

        candidate_key = candidate_row["key"]

        candidate_path_str = candidate_row["local_path"]

        shard_path = candidate_row['shard_path']

        base_footprint = util_matching.path_to_footprint(Path(candidate_path_str))

        
        try:
        

            parts = util_matching.get_image_metadata_from_path(candidate_key)
            
            image_id_str = parts[9]  # 9th field: image_id

            parts = image_id_str.split("_")
            zoom = int(parts[0])
            candidate_row_idx = int(parts[1])
            candidate_col_idx = int(parts[2])
            
    
        except Exception as e:
            logging.warning(f"Failed to parse candidate key {candidate_key}: {e}")
            continue
        debug_dir = Path("debug_tiles")
        debug_dir.mkdir(exist_ok=True)

        tiles = get_surrounding_tiles_sharded(candidate_key, zoom)
        composite_img = compose_tiles_ordered_sharded(
            tiles, (1024, 1024), (candidate_row_idx, candidate_col_idx)
        )

        display_img = F.rotate(
            composite_img, [0, 90, 180, 270][best_rotation_index]
        )




        candidate_img_tensor = tfm.ToTensor()(composite_img)
        candidate_img_tensor = tfm.Resize(
            (MATCHING_IMG_SIZE * 3, MATCHING_IMG_SIZE * 3), antialias=True
        )(candidate_img_tensor)
    

        candidate_img_tensor = candidate_img_tensor.to(DEVICE)

      

        progress(
            0.5 + len(candidate_infos) / num_results * 0.4,
            desc=f"Running matching for candidate {candidate_num}",
        )

        best_inliers, best_footprint = run_matching(
            query_tensor, candidate_img_tensor, base_footprint
        )


        if best_inliers > -1:
            candidate_infos.append(
                {
                    "candidate_num": candidate_num,
                    "filename": Path(candidate_path_str).name,
                    "inliers": best_inliers,
                    "display_image": display_img,
                    "footprint": best_footprint,
                }
            )

        if best_inliers > global_best_inliers:
            global_best_inliers = best_inliers
            global_best_footprint = best_footprint
            global_candidate_num = candidate_num
            global_filename = Path(candidate_path_str).name
            global_best_display_image = display_img

    progress(0.9, desc="Finalizing results")

    folium_map_html = create_map(
        global_best_footprint,
        global_candidate_num,
        global_filename,
        global_best_inliers,
        query_footprint=query_footprint,
    )
    progress(1, desc="Done")

    yield folium_map_html, None
    yield folium_map_html, global_best_display_image

# --- Gradio app setup ---

if __name__ == "__main__":
    example_list = []
    google_examples = []
    queries_folder = Path("./data/queries")
    if queries_folder.exists() and queries_folder.is_dir():
        image_extensions = ["*.jpg", "*.jpeg", "*.png"]
        image_files = []
        for ext in image_extensions:
            image_files.extend(queries_folder.glob(ext))

        if image_files:
            num_examples = min(10, len(image_files))
            random_examples = random.sample(image_files, num_examples)
            example_list = [
                [str(p), str(util_matching.get_footprint_from_path(p))]
                for p in random_examples
            ]
            logging.info(
                f"Loaded {len(example_list)} examples for Gradio with footprints."
            )
        else:
            logging.warning(
                f"No images found in the examples folder: {queries_folder}"
            )
    else:
        logging.warning(f"Examples folder not found: {queries_folder}")

    google_folder = Path("./data/google_maps_queries")
    if google_folder.exists() and google_folder.is_dir():
        image_extensions = ["*.jpg", "*.jpeg", "*.png"]
        google_files = []
        for ext in image_extensions:
            google_files.extend(google_folder.glob(ext))
        if google_files:
            num_google = min(10, len(google_files))
            google_examples = [
                [str(p), str(p.stem).split("_")[0]]  # Empty footprint for Google Maps
                for p in random.sample(google_files, num_google)
            ]

    model_description = """
    ## Model Details
    This is a public API for inference of the EarthLoc2 model, which implements the amazing works of:
    - EarthLoc (https://earthloc-and-earthmatch.github.io/)
    - EarthMatch (https://earthloc-and-earthmatch.github.io/)
    - AstroLoc (https://astro-loc.github.io/)

    ### Architecture
    - DINOv2 base with SALAD aggregator out dim = 3072
    - FAISS index ~ 8gb, indexes 161496 * 4 images (4 rotated versions) from 2021

    ### Training
    - Trained on the original EarthLoc dataset (zooms 9,10,11), in range -60,60 latitude, polar regions not supported
    - Training included additional queries which were not part of the test/val sets 
    - 5000 iterations with a batch size of 96

    ### Performance
    - Achieves R@10 = 90.6 on the original EarthLoc test and val sets (when retrieving against whole db as is)
    - Overall performance is around 10% worse than AstroLoc (https://9d214e4bc329a5c3f9.gradio.live/)
    - Works well on satelite images between 1000 sq.km and 50000 sq.km, smaller or higher areas will not produce good results. 
    ### Matching
    - Uses the Xfeat_steerers matcher with 2048 maximal number of keypoints, we recommend Master with 2048 if you have access to GPU (we are too poor for it). 
    """

    theme = gr.themes.Soft(
        primary_hue=gr.themes.colors.blue,
        font=gr.themes.GoogleFont("Inter"),
    ).set(
        button_primary_background_fill="*primary_900",
        button_primary_background_fill_hover="*primary_700",
    )

    with gr.Blocks(theme=theme) as demo:
        gr.Markdown("# Aerial Photography Locator ")

        with gr.Row():
            with gr.Column(scale=2):
                image_input = gr.Image(
                    type="pil",
                    label="Aerial Photos of Earth",
                    height=400,
                )
                hidden_footprint_text = gr.Textbox(
                    visible=False, label="Query Footprint"
                )

                slider = gr.Slider(
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=10,
                    label="Number of Candidates to Process",
                    info=(
                        "The higher this number to more likely the model is to find a match, "
                        "however it takes longer to find it. Expect around 5 second more compute per candidate."
                    ),
                )

                submit_btn = gr.Button("Localize Image", variant="primary")

                with gr.Row():
                    with gr.Column():
                        if example_list:
                            gr.Markdown("### ISS Example Queries")
                            gr.Examples(
                                examples=example_list,
                                inputs=[image_input, hidden_footprint_text],
                                examples_per_page=5,
                                cache_examples=False,
                            )
                    
                    with gr.Column():
                        if google_examples:
                            gr.Markdown("### Google Maps Example Queries")
                            gr.Examples(
                                examples=google_examples,
                                inputs=[image_input, hidden_footprint_text],
                                examples_per_page=5,
                                cache_examples=False,
                            )

            with gr.Column(scale=2):
                map_output = gr.HTML(label="Final Footprint Map")
                image_output = gr.Image(
                    type="pil",
                    label="Best Matching Candidate",
                    height=400,
                    show_download_button=True,
                )
                gr.Markdown(model_description)

        submit_btn.click(
            fn=search_and_retrieve,
            inputs=[image_input, hidden_footprint_text, slider],
            outputs=[map_output, image_output],
        )

    demo.launch(share=True)