Patrik Stano commited on
Commit
52db785
·
1 Parent(s): f802847

include examples

Browse files
Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -1,9 +1,9 @@
1
  import gradio as gr
2
  from transformers import pipeline, AutoTokenizer
3
  # Load the Hugging Face model
4
- model_path = "patrixtano/mt5-small-anaphora_czech_6e"
5
  model_pipeline = pipeline("text2text-generation", model=model_path)
6
- tokenizer = AutoTokenizer.from_pretrained("patrixtano/mt5-small-anaphora_czech_3e")
7
  def predict(text_input):
8
  """
9
  Generate a prediction for the given input text using the Hugging Face model.
@@ -20,14 +20,21 @@ def predict(text_input):
20
  except Exception as e:
21
  return f"Error: {str(e)}"
22
 
 
 
 
 
23
  # Define the Gradio interface
24
  interface = gr.Interface(
25
  fn=predict,
26
  inputs=gr.Textbox(lines=5, label="Input Text"),
27
  outputs=gr.Textbox(label="Model Output"),
28
- title="Hugging Face Model Demo",
29
- description="Enter text into the input box, and the model will generate an output based on your input.",
30
- theme="default"
 
 
 
31
  )
32
 
33
  # Launch the Gradio app
 
1
  import gradio as gr
2
  from transformers import pipeline, AutoTokenizer
3
  # Load the Hugging Face model
4
+ model_path = "patrixtano/mt5-base-anaphora_czech_6e"
5
  model_pipeline = pipeline("text2text-generation", model=model_path)
6
+ tokenizer = AutoTokenizer.from_pretrained("patrixtano/mt5-base-anaphora_czech_6e")
7
  def predict(text_input):
8
  """
9
  Generate a prediction for the given input text using the Hugging Face model.
 
20
  except Exception as e:
21
  return f"Error: {str(e)}"
22
 
23
+ examples = ["Miluji ženu s vařečkou, <ana>která</ana> umí vařit.", "Zřejmě to musel fotit nějaký chatař od
24
+ sousedství , nebo by to mohl taky fotit můj manžel, ale <ana>on</ana> se obyčejně k aparátu
25
+ moc neměl.", "Tomáš se domluvil s Jardou, že <ant>ho</ant> odveze na nádraží."]
26
+
27
  # Define the Gradio interface
28
  interface = gr.Interface(
29
  fn=predict,
30
  inputs=gr.Textbox(lines=5, label="Input Text"),
31
  outputs=gr.Textbox(label="Model Output"),
32
+ title="Anaphora resolution demo",
33
+ description="Enter text into the "Input Text" box, include <ana> </ana> tags around the anaphora which
34
+ is to be resolved. The model generates a copy of the text with <ant> </ant> tags marking the predicted
35
+ antecedent",
36
+ theme="default",
37
+ examples=examples
38
  )
39
 
40
  # Launch the Gradio app