Spaces:
Build error
Build error
File size: 12,227 Bytes
0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 0af8075 783c2f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import os
from huggingface_hub import whoami
# Hugging Face login
def hello(profile: gr.OAuthProfile | None) -> str:
if profile is None:
return "I don't know you."
return f"Hello {profile.name}"
def list_organizations(oauth_token: gr.OAuthToken | None) -> str:
if oauth_token is None:
return "Please log in to list organizations."
org_names = [org["name"] for org in whoami(oauth_token.token)["orgs"]]
return f"You belong to {', '.join(org_names)}."
class ConversationManager:
def __init__(self):
self.models = {}
self.conversation = []
self.delay = 3
self.is_paused = False
self.current_model = None
self.initial_prompt = ""
self.task_complete = False # New attribute for task completion
def load_model(self, model_name):
if model_name in self.models:
return self.models[model_name]
try:
print(f"Attempting to load model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
self.models[model_name] = (model, tokenizer)
print(f"Successfully loaded model: {model_name}")
return self.models[model_name]
except Exception as e:
print(f"Failed to load model {model_name}: {e}")
return None
def generate_response(self, model_name, prompt):
model, tokenizer = self.load_model(model_name)
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
with torch.no_grad():
outputs = model.generate(**inputs, max_length=200, num_return_sequences=1, do_sample=True)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def add_to_conversation(self, model_name, response):
self.conversation.append((model_name, response))
if "task complete?" in response.lower(): # Check for task completion marker
self.task_complete = True
def get_conversation_history(self):
return "\n".join([f"{model}: {msg}" for model, msg in self.conversation])
def clear_conversation(self):
self.conversation = []
self.initial_prompt = ""
self.models = {}
self.current_model = None
self.task_complete = False # Reset task completion status
def rewind_conversation(self, steps):
self.conversation = self.conversation[:-steps]
self.task_complete = False # Reset task completion status after rewinding
def rewind_and_insert(self, steps, inserted_response):
if steps > 0:
self.conversation = self.conversation[:-steps]
if inserted_response.strip():
last_model = self.conversation[-1][0] if self.conversation else "User"
next_model = "Model 1" if last_model == "Model 2" or last_model == "User" else "Model 2"
self.conversation.append((next_model, inserted_response))
self.current_model = last_model
self.task_complete = False # Reset task completion status after rewinding and inserting
manager = ConversationManager()
def get_model(dropdown, custom):
model = custom if custom.strip() else dropdown
return (model, model) # Return a tuple (label, value)
def chat(model1, model2, user_input, history, inserted_response=""):
model1 = get_model(model1, model1_custom.value)[0]
model2 = get_model(model2, model2_custom.value)[0]
if not manager.conversation:
manager.initial_prompt = user_input
manager.clear_conversation()
manager.add_to_conversation("User", user_input)
models = [model1, model2]
current_model_index = 0 if manager.current_model in ["User", "Model 2"] else 1
while not manager.task_complete: # Continue until task is complete
if manager.is_paused:
yield history, "Conversation paused."
return
model = models[current_model_index]
manager.current_model = model
if inserted_response and current_model_index == 0:
response = inserted_response
inserted_response = ""
else:
prompt = manager.get_conversation_history() + "\n\nPlease continue the conversation. If you believe the task is complete, end your response with 'Task complete?'"
response = manager.generate_response(model, prompt)
manager.add_to_conversation(model, response)
history = manager.get_conversation_history()
for i in range(manager.delay, 0, -1):
yield history, f"{model} is writing... {i}"
time.sleep(1)
yield history, ""
if manager.task_complete:
yield history, "Models believe the task is complete. Are you satisfied with the result? (Yes/No)"
return
current_model_index = (current_model_index + 1) % 2
return history, "Conversation completed."
models = [model1, model2]
current_model_index = 0 if manager.current_model in ["User", "Model 2"] else 1
while not manager.task_complete: # Continue until task is complete
if manager.is_paused:
yield history, "Conversation paused."
return
model = models[current_model_index]
manager.current_model = model
if inserted_response and current_model_index == 0:
response = inserted_response
inserted_response = ""
else:
prompt = manager.get_conversation_history() + "\n\nPlease continue the conversation. If you believe the task is complete, end your response with 'Task complete?'"
response = manager.generate_response(model, prompt)
manager.add_to_conversation(model, response)
history = manager.get_conversation_history()
for i in range(manager.delay, 0, -1):
yield history, f"{model} is writing... {i}"
time.sleep(1)
yield history, ""
if manager.task_complete:
yield history, "Models believe the task is complete. Are you satisfied with the result? (Yes/No)"
return
current_model_index = (current_model_index + 1) % 2
return history, "Conversation completed."
def user_satisfaction(satisfied, history):
if satisfied.lower() == 'yes':
return history, "Task completed successfully."
else:
manager.task_complete = False
return history, "Continuing the conversation..."
def pause_conversation():
manager.is_paused = True
return "Conversation paused. Press Resume to continue."
def resume_conversation():
manager.is_paused = False
return "Conversation resumed."
def edit_response(edited_text):
if manager.conversation:
manager.conversation[-1] = (manager.current_model, edited_text)
manager.task_complete = False # Reset task completion status after editing
return manager.get_conversation_history()
def restart_conversation(model1, model2, user_input):
manager.clear_conversation()
return chat(model1, model2, user_input, "")
def rewind_and_insert(steps, inserted_response, history):
manager.rewind_and_insert(int(steps), inserted_response)
return manager.get_conversation_history(), ""
# This list should be populated with the exact model names when available
open_source_models = [
"meta-llama/Llama-2-7b-chat-hf",
"meta-llama/Llama-2-13b-chat-hf",
"meta-llama/Llama-2-70b-chat-hf",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"bigcode/starcoder2-15b",
"bigcode/starcoder2-3b",
"tiiuae/falcon-7b",
"tiiuae/falcon-40b",
"EleutherAI/gpt-neox-20b",
"google/flan-ul2",
"stabilityai/stablelm-zephyr-3b",
"HuggingFaceH4/zephyr-7b-beta",
"microsoft/phi-2",
"google/gemma-7b-it"
]
with gr.Blocks() as demo:
gr.LoginButton()
m1 = gr.Markdown()
m2 = gr.Markdown()
demo.load(hello, inputs=None, outputs=m1)
demo.load(list_organizations, inputs=None, outputs=m2)
gr.Markdown("# ConversAI Playground")
with gr.Row():
with gr.Column(scale=1):
model1_dropdown = gr.Dropdown(choices=open_source_models, label="Model 1")
model1_custom = gr.Textbox(label="Custom Model 1")
with gr.Column(scale=1):
model2_dropdown = gr.Dropdown(choices=open_source_models, label="Model 2")
model2_custom = gr.Textbox(label="Custom Model 2")
user_input = gr.Textbox(label="Initial prompt", lines=2)
chat_history = gr.Textbox(label="Conversation", lines=20)
current_response = gr.Textbox(label="Current model response", lines=3)
with gr.Row():
pause_btn = gr.Button("Pause")
edit_btn = gr.Button("Edit")
rewind_btn = gr.Button("Rewind")
resume_btn = gr.Button("Resume")
restart_btn = gr.Button("Restart")
clear_btn = gr.Button("Clear")
with gr.Row():
rewind_steps = gr.Slider(0, 10, 1, label="Steps to rewind")
inserted_response = gr.Textbox(label="Insert response after rewind", lines=2)
delay_slider = gr.Slider(0, 10, 3, label="Response Delay (seconds)")
user_satisfaction_input = gr.Textbox(label="Are you satisfied with the result? (Yes/No)", visible=False)
gr.Markdown("""
## Button Descriptions
- **Pause**: Temporarily stops the conversation. The current model will finish its response.
- **Edit**: Allows you to modify the last response in the conversation.
- **Rewind**: Removes the specified number of last responses from the conversation.
- **Resume**: Continues the conversation from where it was paused.
- **Restart**: Begins a new conversation with the same or different models, keeping the initial prompt.
- **Clear**: Resets everything, including loaded models, conversation history, and initial prompt.
""")
def on_chat_update(history, response):
if "Models believe the task is complete" in response:
return gr.update(visible=True), gr.update(visible=False)
return gr.update(visible=False), gr.update(visible=True)
start_btn = gr.Button("Start Conversation")
chat_output = start_btn.click(
chat,
inputs=[
model1_dropdown,
model2_dropdown,
user_input,
chat_history
],
outputs=[chat_history, current_response]
)
chat_output.then(
on_chat_update,
inputs=[chat_history, current_response],
outputs=[user_satisfaction_input, start_btn]
)
user_satisfaction_input.submit(
user_satisfaction,
inputs=[user_satisfaction_input, chat_history],
outputs=[chat_history, current_response]
).then(
chat,
inputs=[
model1_dropdown,
model2_dropdown,
user_input,
chat_history
],
outputs=[chat_history, current_response]
)
pause_btn.click(pause_conversation, outputs=[current_response])
resume_btn.click(
chat,
inputs=[
model1_dropdown,
model2_dropdown,
user_input,
chat_history,
inserted_response
],
outputs=[chat_history, current_response]
)
edit_btn.click(edit_response, inputs=[current_response], outputs=[chat_history])
rewind_btn.click(rewind_and_insert, inputs=[rewind_steps, inserted_response, chat_history], outputs=[chat_history, current_response])
restart_btn.click(
restart_conversation,
inputs=[
model1_dropdown,
model2_dropdown,
user_input
],
outputs=[chat_history, current_response]
)
clear_btn.click(manager.clear_conversation, outputs=[chat_history, current_response, user_input])
delay_slider.change(lambda x: setattr(manager, 'delay', x), inputs=[delay_slider])
if __name__ == "__main__":
demo.launch()
|