File size: 12,227 Bytes
0af8075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c2f7
 
0af8075
 
783c2f7
 
 
0af8075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c2f7
0af8075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c2f7
0af8075
 
783c2f7
0af8075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c2f7
0af8075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c2f7
 
0af8075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783c2f7
 
0af8075
 
 
 
 
 
 
 
 
 
783c2f7
 
0af8075
 
 
 
 
 
 
 
 
 
 
783c2f7
 
0af8075
 
 
 
 
 
 
 
 
783c2f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import os
from huggingface_hub import whoami

# Hugging Face login
def hello(profile: gr.OAuthProfile | None) -> str:
    if profile is None:
        return "I don't know you."
    return f"Hello {profile.name}"

def list_organizations(oauth_token: gr.OAuthToken | None) -> str:
    if oauth_token is None:
        return "Please log in to list organizations."
    org_names = [org["name"] for org in whoami(oauth_token.token)["orgs"]]
    return f"You belong to {', '.join(org_names)}."


class ConversationManager:
    def __init__(self):
        self.models = {}
        self.conversation = []
        self.delay = 3
        self.is_paused = False
        self.current_model = None
        self.initial_prompt = ""
        self.task_complete = False  # New attribute for task completion

    def load_model(self, model_name):
        if model_name in self.models:
            return self.models[model_name]

        try:
            print(f"Attempting to load model: {model_name}")
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
            self.models[model_name] = (model, tokenizer)
            print(f"Successfully loaded model: {model_name}")
            return self.models[model_name]
        except Exception as e:
            print(f"Failed to load model {model_name}: {e}")
            return None

    def generate_response(self, model_name, prompt):
        model, tokenizer = self.load_model(model_name)
        inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
        with torch.no_grad():
            outputs = model.generate(**inputs, max_length=200, num_return_sequences=1, do_sample=True)
        return tokenizer.decode(outputs[0], skip_special_tokens=True)

    def add_to_conversation(self, model_name, response):
        self.conversation.append((model_name, response))
        if "task complete?" in response.lower():  # Check for task completion marker
            self.task_complete = True

    def get_conversation_history(self):
        return "\n".join([f"{model}: {msg}" for model, msg in self.conversation])

    def clear_conversation(self):
        self.conversation = []
        self.initial_prompt = ""
        self.models = {}
        self.current_model = None
        self.task_complete = False  # Reset task completion status

    def rewind_conversation(self, steps):
        self.conversation = self.conversation[:-steps]
        self.task_complete = False  # Reset task completion status after rewinding

    def rewind_and_insert(self, steps, inserted_response):
        if steps > 0:
            self.conversation = self.conversation[:-steps]
        if inserted_response.strip():
            last_model = self.conversation[-1][0] if self.conversation else "User"
            next_model = "Model 1" if last_model == "Model 2" or last_model == "User" else "Model 2"
            self.conversation.append((next_model, inserted_response))
        self.current_model = last_model
        self.task_complete = False  # Reset task completion status after rewinding and inserting

manager = ConversationManager()

def get_model(dropdown, custom):
    model = custom if custom.strip() else dropdown
    return (model, model)  # Return a tuple (label, value)

def chat(model1, model2, user_input, history, inserted_response=""):
    model1 = get_model(model1, model1_custom.value)[0]
    model2 = get_model(model2, model2_custom.value)[0]
    
    if not manager.conversation:
        manager.initial_prompt = user_input
        manager.clear_conversation()
        manager.add_to_conversation("User", user_input)
    
    models = [model1, model2]
    current_model_index = 0 if manager.current_model in ["User", "Model 2"] else 1
    
    while not manager.task_complete:  # Continue until task is complete
        if manager.is_paused:
            yield history, "Conversation paused."
            return

        model = models[current_model_index]
        manager.current_model = model
        
        if inserted_response and current_model_index == 0:
            response = inserted_response
            inserted_response = ""
        else:
            prompt = manager.get_conversation_history() + "\n\nPlease continue the conversation. If you believe the task is complete, end your response with 'Task complete?'"
            response = manager.generate_response(model, prompt)
        
        manager.add_to_conversation(model, response)
        history = manager.get_conversation_history()
        
        for i in range(manager.delay, 0, -1):
            yield history, f"{model} is writing... {i}"
            time.sleep(1)
        
        yield history, ""
        
        if manager.task_complete:
            yield history, "Models believe the task is complete. Are you satisfied with the result? (Yes/No)"
            return
        
        current_model_index = (current_model_index + 1) % 2
    
    return history, "Conversation completed."

    
    models = [model1, model2]
    current_model_index = 0 if manager.current_model in ["User", "Model 2"] else 1
    
    while not manager.task_complete:  # Continue until task is complete
        if manager.is_paused:
            yield history, "Conversation paused."
            return

        model = models[current_model_index]
        manager.current_model = model
        
        if inserted_response and current_model_index == 0:
            response = inserted_response
            inserted_response = ""
        else:
            prompt = manager.get_conversation_history() + "\n\nPlease continue the conversation. If you believe the task is complete, end your response with 'Task complete?'"
            response = manager.generate_response(model, prompt)
        
        manager.add_to_conversation(model, response)
        history = manager.get_conversation_history()
        
        for i in range(manager.delay, 0, -1):
            yield history, f"{model} is writing... {i}"
            time.sleep(1)
        
        yield history, ""
        
        if manager.task_complete:
            yield history, "Models believe the task is complete. Are you satisfied with the result? (Yes/No)"
            return
        
        current_model_index = (current_model_index + 1) % 2
    
    return history, "Conversation completed."

def user_satisfaction(satisfied, history):
    if satisfied.lower() == 'yes':
        return history, "Task completed successfully."
    else:
        manager.task_complete = False
        return history, "Continuing the conversation..."

def pause_conversation():
    manager.is_paused = True
    return "Conversation paused. Press Resume to continue."

def resume_conversation():
    manager.is_paused = False
    return "Conversation resumed."

def edit_response(edited_text):
    if manager.conversation:
        manager.conversation[-1] = (manager.current_model, edited_text)
    manager.task_complete = False  # Reset task completion status after editing
    return manager.get_conversation_history()

def restart_conversation(model1, model2, user_input):
    manager.clear_conversation()
    return chat(model1, model2, user_input, "")

def rewind_and_insert(steps, inserted_response, history):
    manager.rewind_and_insert(int(steps), inserted_response)
    return manager.get_conversation_history(), ""

# This list should be populated with the exact model names when available
open_source_models = [
    "meta-llama/Llama-2-7b-chat-hf",
    "meta-llama/Llama-2-13b-chat-hf",
    "meta-llama/Llama-2-70b-chat-hf",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "bigcode/starcoder2-15b",
    "bigcode/starcoder2-3b",
    "tiiuae/falcon-7b",
    "tiiuae/falcon-40b",
    "EleutherAI/gpt-neox-20b",
    "google/flan-ul2",
    "stabilityai/stablelm-zephyr-3b",
    "HuggingFaceH4/zephyr-7b-beta",
    "microsoft/phi-2",
    "google/gemma-7b-it"
]

with gr.Blocks() as demo:
    gr.LoginButton()
    m1 = gr.Markdown()
    m2 = gr.Markdown()
    demo.load(hello, inputs=None, outputs=m1)
    demo.load(list_organizations, inputs=None, outputs=m2) 
    gr.Markdown("# ConversAI Playground")
    
    with gr.Row():
        with gr.Column(scale=1):
            model1_dropdown = gr.Dropdown(choices=open_source_models, label="Model 1")
            model1_custom = gr.Textbox(label="Custom Model 1")
        with gr.Column(scale=1):
            model2_dropdown = gr.Dropdown(choices=open_source_models, label="Model 2")
            model2_custom = gr.Textbox(label="Custom Model 2")
    
    user_input = gr.Textbox(label="Initial prompt", lines=2)
    chat_history = gr.Textbox(label="Conversation", lines=20)
    current_response = gr.Textbox(label="Current model response", lines=3)
    
    with gr.Row():
        pause_btn = gr.Button("Pause")
        edit_btn = gr.Button("Edit")
        rewind_btn = gr.Button("Rewind")
        resume_btn = gr.Button("Resume")
        restart_btn = gr.Button("Restart")
        clear_btn = gr.Button("Clear")
    
    with gr.Row():
        rewind_steps = gr.Slider(0, 10, 1, label="Steps to rewind")
        inserted_response = gr.Textbox(label="Insert response after rewind", lines=2)
    
    delay_slider = gr.Slider(0, 10, 3, label="Response Delay (seconds)")

    user_satisfaction_input = gr.Textbox(label="Are you satisfied with the result? (Yes/No)", visible=False)


    gr.Markdown("""
    ## Button Descriptions
    - **Pause**: Temporarily stops the conversation. The current model will finish its response.
    - **Edit**: Allows you to modify the last response in the conversation.
    - **Rewind**: Removes the specified number of last responses from the conversation.
    - **Resume**: Continues the conversation from where it was paused.
    - **Restart**: Begins a new conversation with the same or different models, keeping the initial prompt.
    - **Clear**: Resets everything, including loaded models, conversation history, and initial prompt.
    """)

    def on_chat_update(history, response):
        if "Models believe the task is complete" in response:
            return gr.update(visible=True), gr.update(visible=False)
        return gr.update(visible=False), gr.update(visible=True)

    start_btn = gr.Button("Start Conversation")
    chat_output = start_btn.click(
        chat,
        inputs=[
            model1_dropdown,
            model2_dropdown,
            user_input,
            chat_history
        ],
        outputs=[chat_history, current_response]
    )
    
    chat_output.then(
        on_chat_update,
        inputs=[chat_history, current_response],
        outputs=[user_satisfaction_input, start_btn]
    )
    
    user_satisfaction_input.submit(
        user_satisfaction,
        inputs=[user_satisfaction_input, chat_history],
        outputs=[chat_history, current_response]
    ).then(
        chat,
        inputs=[
            model1_dropdown,
            model2_dropdown,
            user_input,
            chat_history
        ],
        outputs=[chat_history, current_response]
    )
    
    pause_btn.click(pause_conversation, outputs=[current_response])
    resume_btn.click(
        chat,
        inputs=[
            model1_dropdown,
            model2_dropdown,
            user_input,
            chat_history,
            inserted_response
        ],
        outputs=[chat_history, current_response]
    )
    edit_btn.click(edit_response, inputs=[current_response], outputs=[chat_history])
    rewind_btn.click(rewind_and_insert, inputs=[rewind_steps, inserted_response, chat_history], outputs=[chat_history, current_response])
    restart_btn.click(
        restart_conversation,
        inputs=[
            model1_dropdown,
            model2_dropdown,
            user_input
        ],
        outputs=[chat_history, current_response]
    )
    clear_btn.click(manager.clear_conversation, outputs=[chat_history, current_response, user_input])
    delay_slider.change(lambda x: setattr(manager, 'delay', x), inputs=[delay_slider])

if __name__ == "__main__":
    demo.launch()