Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ import random
|
|
| 7 |
from diffusers import StableDiffusionXLPipeline
|
| 8 |
from diffusers import EulerAncestralDiscreteScheduler
|
| 9 |
import torch
|
| 10 |
-
import re
|
| 11 |
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
|
@@ -30,151 +29,22 @@ pipe.unet.to(torch.float16)
|
|
| 30 |
|
| 31 |
MAX_SEED = np.iinfo(np.int32).max
|
| 32 |
MAX_IMAGE_SIZE = 1216
|
| 33 |
-
|
| 34 |
-
# Function to parse weighted prompts
|
| 35 |
-
def parse_prompt_attention(text):
|
| 36 |
-
"""
|
| 37 |
-
Parses a prompt with attention weights
|
| 38 |
-
Examples:
|
| 39 |
-
"a (red:1.5) dress" -> weight "red" with 1.5
|
| 40 |
-
"a ((blue)) sky" -> weight "blue" with 2.0
|
| 41 |
-
"""
|
| 42 |
-
re_attention = r'\((\()?([^:]+)(\))?(?::([\d\.]+))?\)'
|
| 43 |
-
res = []
|
| 44 |
-
|
| 45 |
-
for match in re.finditer(re_attention, text):
|
| 46 |
-
double_paren, content, _, weight = match.groups()
|
| 47 |
-
weight = float(weight) if weight is not None else 1.0
|
| 48 |
-
if double_paren:
|
| 49 |
-
weight = weight * 1.1 # Optional: make (()) slightly higher than ()
|
| 50 |
-
|
| 51 |
-
res.append((match.start(), match.end(), content, weight))
|
| 52 |
-
|
| 53 |
-
return res
|
| 54 |
-
|
| 55 |
-
# Function to process prompts with attention weights
|
| 56 |
-
def get_weighted_text_embeddings(
|
| 57 |
-
pipe,
|
| 58 |
-
prompt,
|
| 59 |
-
negative_prompt=None
|
| 60 |
-
):
|
| 61 |
-
"""
|
| 62 |
-
Processes prompts with attention weights and handles long prompts
|
| 63 |
-
by chunking, applying weights, and combining embeddings
|
| 64 |
-
"""
|
| 65 |
-
max_length = pipe.tokenizer.model_max_length
|
| 66 |
-
|
| 67 |
-
# Process the input prompt with attention weights
|
| 68 |
-
parsed_attention = parse_prompt_attention(prompt)
|
| 69 |
-
|
| 70 |
-
# Handle long prompts by chunking them appropriately
|
| 71 |
-
if len(prompt.split()) > 60: # Rough estimate of potentially exceeding token limit
|
| 72 |
-
print(f"Long prompt detected. Will process in chunks.")
|
| 73 |
-
|
| 74 |
-
# Remove and store attention weights for processing
|
| 75 |
-
text_chunks = []
|
| 76 |
-
current_length = 0
|
| 77 |
-
current_chunk = ""
|
| 78 |
-
|
| 79 |
-
words = prompt.split()
|
| 80 |
-
|
| 81 |
-
for word in words:
|
| 82 |
-
if current_length + len(word.split()) + 1 > 60: # Start a new chunk
|
| 83 |
-
text_chunks.append(current_chunk)
|
| 84 |
-
current_chunk = word
|
| 85 |
-
current_length = len(word.split())
|
| 86 |
-
else:
|
| 87 |
-
if current_chunk:
|
| 88 |
-
current_chunk += " " + word
|
| 89 |
-
else:
|
| 90 |
-
current_chunk = word
|
| 91 |
-
current_length += len(word.split())
|
| 92 |
-
|
| 93 |
-
if current_chunk:
|
| 94 |
-
text_chunks.append(current_chunk)
|
| 95 |
-
|
| 96 |
-
print(f"Split into {len(text_chunks)} chunks: {text_chunks}")
|
| 97 |
-
|
| 98 |
-
# Process each chunk with the tokenizer and get embedding
|
| 99 |
-
prompt_embeds_list = []
|
| 100 |
-
pooled_prompt_embeds_list = []
|
| 101 |
-
|
| 102 |
-
for text_chunk in text_chunks:
|
| 103 |
-
text_input = pipe.tokenizer(
|
| 104 |
-
text_chunk,
|
| 105 |
-
padding="max_length",
|
| 106 |
-
max_length=pipe.tokenizer.model_max_length,
|
| 107 |
-
truncation=True,
|
| 108 |
-
return_tensors="pt",
|
| 109 |
-
)
|
| 110 |
-
text_input = text_input.to(device)
|
| 111 |
-
|
| 112 |
-
# Get text embeddings for both encoders
|
| 113 |
-
prompt_embeds = pipe.text_encoder(text_input.input_ids)[0]
|
| 114 |
-
pooled_prompt_embeds = pipe.text_encoder_2(text_input.input_ids)[0]
|
| 115 |
-
|
| 116 |
-
prompt_embeds_list.append(prompt_embeds)
|
| 117 |
-
pooled_prompt_embeds_list.append(pooled_prompt_embeds)
|
| 118 |
-
|
| 119 |
-
# Average the embeddings from all chunks (alternatively could use max pooling or other methods)
|
| 120 |
-
prompt_embeds = torch.stack(prompt_embeds_list).mean(dim=0)
|
| 121 |
-
pooled_prompt_embeds = torch.stack(pooled_prompt_embeds_list).mean(dim=0)
|
| 122 |
-
|
| 123 |
-
else:
|
| 124 |
-
# For shorter prompts, just use the standard pipeline processing
|
| 125 |
-
text_input = pipe.tokenizer(
|
| 126 |
-
prompt,
|
| 127 |
-
padding="max_length",
|
| 128 |
-
max_length=pipe.tokenizer.model_max_length,
|
| 129 |
-
truncation=True,
|
| 130 |
-
return_tensors="pt",
|
| 131 |
-
)
|
| 132 |
-
text_input = text_input.to(device)
|
| 133 |
-
|
| 134 |
-
prompt_embeds = pipe.text_encoder(text_input.input_ids)[0]
|
| 135 |
-
pooled_prompt_embeds = pipe.text_encoder_2(text_input.input_ids)[0]
|
| 136 |
-
|
| 137 |
-
# Process negative prompt if provided
|
| 138 |
-
if negative_prompt is None:
|
| 139 |
-
negative_prompt = ""
|
| 140 |
-
|
| 141 |
-
uncond_input = pipe.tokenizer(
|
| 142 |
-
negative_prompt,
|
| 143 |
-
padding="max_length",
|
| 144 |
-
max_length=pipe.tokenizer.model_max_length,
|
| 145 |
-
truncation=True,
|
| 146 |
-
return_tensors="pt",
|
| 147 |
-
)
|
| 148 |
-
uncond_input = uncond_input.to(device)
|
| 149 |
-
negative_prompt_embeds = pipe.text_encoder(uncond_input.input_ids)[0]
|
| 150 |
-
negative_pooled_prompt_embeds = pipe.text_encoder_2(uncond_input.input_ids)[0]
|
| 151 |
-
|
| 152 |
-
# Combine positive and negative embeddings
|
| 153 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 154 |
-
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
| 155 |
|
| 156 |
-
return prompt_embeds, pooled_prompt_embeds
|
| 157 |
-
|
| 158 |
-
# Customized version of the generation function
|
| 159 |
@spaces.GPU
|
| 160 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
if randomize_seed:
|
| 162 |
seed = random.randint(0, MAX_SEED)
|
| 163 |
|
| 164 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 165 |
|
| 166 |
try:
|
| 167 |
-
# Get embeddings with special handling for long prompts
|
| 168 |
-
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings(
|
| 169 |
-
pipe,
|
| 170 |
-
prompt,
|
| 171 |
-
negative_prompt
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
# Use the custom embeddings to generate the image
|
| 175 |
output_image = pipe(
|
| 176 |
-
|
| 177 |
-
|
| 178 |
guidance_scale=guidance_scale,
|
| 179 |
num_inference_steps=num_inference_steps,
|
| 180 |
width=width,
|
|
@@ -205,8 +75,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 205 |
prompt = gr.Text(
|
| 206 |
label="Prompt",
|
| 207 |
show_label=False,
|
| 208 |
-
max_lines=
|
| 209 |
-
placeholder="Enter your prompt (
|
| 210 |
container=False,
|
| 211 |
)
|
| 212 |
|
|
@@ -218,7 +88,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 218 |
|
| 219 |
negative_prompt = gr.Text(
|
| 220 |
label="Negative prompt",
|
| 221 |
-
max_lines=
|
| 222 |
placeholder="Enter a negative prompt",
|
| 223 |
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
| 224 |
)
|
|
|
|
| 7 |
from diffusers import StableDiffusionXLPipeline
|
| 8 |
from diffusers import EulerAncestralDiscreteScheduler
|
| 9 |
import torch
|
|
|
|
| 10 |
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
|
|
|
|
| 29 |
|
| 30 |
MAX_SEED = np.iinfo(np.int32).max
|
| 31 |
MAX_IMAGE_SIZE = 1216
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
@spaces.GPU
|
| 34 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 35 |
+
# Check and truncate prompt if too long (CLIP can only handle 77 tokens)
|
| 36 |
+
if len(prompt.split()) > 60: # Rough estimate to avoid exceeding token limit
|
| 37 |
+
print("Warning: Prompt may be too long and will be truncated by the model")
|
| 38 |
+
|
| 39 |
if randomize_seed:
|
| 40 |
seed = random.randint(0, MAX_SEED)
|
| 41 |
|
| 42 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 43 |
|
| 44 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
output_image = pipe(
|
| 46 |
+
prompt=prompt,
|
| 47 |
+
negative_prompt=negative_prompt,
|
| 48 |
guidance_scale=guidance_scale,
|
| 49 |
num_inference_steps=num_inference_steps,
|
| 50 |
width=width,
|
|
|
|
| 75 |
prompt = gr.Text(
|
| 76 |
label="Prompt",
|
| 77 |
show_label=False,
|
| 78 |
+
max_lines=1,
|
| 79 |
+
placeholder="Enter your prompt (keep it under 60 words for best results)",
|
| 80 |
container=False,
|
| 81 |
)
|
| 82 |
|
|
|
|
| 88 |
|
| 89 |
negative_prompt = gr.Text(
|
| 90 |
label="Negative prompt",
|
| 91 |
+
max_lines=1,
|
| 92 |
placeholder="Enter a negative prompt",
|
| 93 |
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
| 94 |
)
|