Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import onnx
|
2 |
+
import numpy as np
|
3 |
+
import onnxruntime as ort
|
4 |
+
from PIL import Image
|
5 |
+
import cv2
|
6 |
+
import os
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
import mxnet
|
10 |
+
from mxnet.gluon.data.vision import transforms
|
11 |
+
|
12 |
+
os.system("wget https://s3.amazonaws.com/onnx-model-zoo/synset.txt")
|
13 |
+
|
14 |
+
|
15 |
+
with open('synset.txt', 'r') as f:
|
16 |
+
labels = [l.rstrip() for l in f]
|
17 |
+
|
18 |
+
os.system("wget https://github.com/AK391/models/raw/main/vision/classification/shufflenet/model/shufflenet-9.onnx")
|
19 |
+
|
20 |
+
os.system("wget https://s3.amazonaws.com/model-server/inputs/kitten.jpg")
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
model_path = 'shufflenet-9.onnx'
|
25 |
+
model = onnx.load(model_path)
|
26 |
+
session = ort.InferenceSession(model.SerializeToString())
|
27 |
+
|
28 |
+
def get_image(path):
|
29 |
+
with Image.open(path) as img:
|
30 |
+
img = np.array(img.convert('RGB'))
|
31 |
+
return img
|
32 |
+
|
33 |
+
def preprocess(img):
|
34 |
+
'''
|
35 |
+
Preprocessing required on the images for inference with mxnet gluon
|
36 |
+
The function takes path to an image and returns processed tensor
|
37 |
+
'''
|
38 |
+
transform_fn = transforms.Compose([
|
39 |
+
transforms.Resize(224),
|
40 |
+
transforms.CenterCrop(224),
|
41 |
+
transforms.ToTensor(),
|
42 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
43 |
+
])
|
44 |
+
img = mxnet.ndarray.array(img)
|
45 |
+
img = transform_fn(img)
|
46 |
+
img = img.expand_dims(axis=0) # batchify
|
47 |
+
|
48 |
+
return img.asnumpy()
|
49 |
+
|
50 |
+
|
51 |
+
def predict(path):
|
52 |
+
img = get_image(path)
|
53 |
+
img = preprocess(img)
|
54 |
+
ort_inputs = {session.get_inputs()[0].name: img}
|
55 |
+
preds = session.run(None, ort_inputs)[0]
|
56 |
+
preds = np.squeeze(preds)
|
57 |
+
a = np.argsort(preds)
|
58 |
+
results = {}
|
59 |
+
for i in a[0:5]:
|
60 |
+
results[labels[a[i]]] = float(preds[a[i]])
|
61 |
+
return results
|
62 |
+
|
63 |
+
|
64 |
+
title="ShuffleNet-v1"
|
65 |
+
description="ShuffleNet is a deep convolutional network for image classification. ShuffleNetV2 is an improved architecture that is the state-of-the-art in terms of speed and accuracy tradeoff used for image classification."
|
66 |
+
|
67 |
+
examples=[['kitten.jpg']]
|
68 |
+
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True)
|