Spaces:
Sleeping
Sleeping
File size: 11,891 Bytes
cf07861 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# base = '/Users/oikantik/expts_check_samples_ocr_quality'
import streamlit as st, os, json, glob, pandas as pd
from PIL import Image
# βββββββββ CONFIG ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
langs_dict = {
'hi': 'Hindi', 'bn': 'Bengali', 'pa': 'Punjabi', 'or': 'Odia', 'ta': 'Tamil',
'te': 'Telugu', 'kn': 'Kannada', 'ml': 'Malayalam', 'mr': 'Marathi', 'gu': 'Gujarati'
}
doc_categories = {
'mg': 'magazines', 'tb': 'textbooks', 'nv': 'novels', 'np': 'newspapers',
'rp': 'research-papers', 'br': 'brochures', 'nt': 'notices', 'sy': 'syllabi',
'qp': 'question-papers', 'mn': 'manuals'
}
base = '/files/expts_check_samples_ocr_quality'
img_dir, gcp_dir, gem_dir = [f'{base}/{d}' for d in
('ocr_snippets_testing', 'gcp_ocr_snippets', 'gemini_ocr_snippets')]
RATING_FILE = 'ratings.csv'
UI_STATE_FILE = 'ui_state.json'
COLS = ['image_name', 'lang', 'domain', 'image_rating', 'ocr_pred_rating']
DEFAULT, SKIP = -1, -2 # -1 = not rated, -2 = skipped
# βββββββββ HELPERS βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def read_json(path, default):
try:
with open(path) as f:
return json.load(f)
except FileNotFoundError:
return default
def write_json(path, obj):
with open(path, 'w') as f:
json.dump(obj, f, indent=2)
def load_ratings():
if os.path.exists(RATING_FILE):
return pd.read_csv(RATING_FILE)
pd.DataFrame(columns=COLS).to_csv(RATING_FILE, index=False)
return pd.read_csv(RATING_FILE)
def safe_json(path):
try:
with open(path) as f:
return json.load(f)
except FileNotFoundError:
return None
def gcp_text(path):
js = safe_json(path)
if js:
return ' '.join(
b['block_text'] for b in js.get('ocr_output', {}).get('blocks', [])
)
return 'β'
def gem_text(path):
js = safe_json(path)
if js:
parts = (
js.get('candidates', [{}])[0]
.get('content', {})
.get('parts', [])
)
if parts:
return ' '.join(
p.get('text', '') for p in parts if isinstance(p, dict)
)
return 'β'
def md15(label, txt):
st.markdown(
f'<div style="font-size:15px;"><b>{label}</b><br>{txt}</div>',
unsafe_allow_html=True,
)
# βββββββββ STATE INIT ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ratings_df = load_ratings()
ui_state = read_json(
UI_STATE_FILE,
{"last_lang": None, "show_completed": False, "view_completed": False},
)
# βββββββββ SIDEBAR βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# language selector
default_lang = ui_state.get("last_lang")
default_lang_idx = (
list(langs_dict.values()).index(default_lang)
if default_lang in langs_dict.values()
else 0
)
lang_name = st.sidebar.selectbox(
'Language', list(langs_dict.values()), index=default_lang_idx
)
ui_state["last_lang"] = lang_name # remember selection
lang_code = next(k for k, v in langs_dict.items() if v == lang_name)
# overall progress
total_lang = len(glob.glob(os.path.join(img_dir, lang_code, '*')))
done_lang = ratings_df[ratings_df.lang == lang_code].image_name.nunique()
st.sidebar.markdown(f'**Progress:** {done_lang}/{total_lang}')
# per-domain progress
with st.sidebar.expander('Per-domain progress'):
for dk, dn in doc_categories.items():
total = len(glob.glob(os.path.join(img_dir, lang_code, f'{dk}_{lang_code}_*')))
done = ratings_df[
(ratings_df.lang == lang_code) & (ratings_df.domain == dk)
].image_name.nunique()
st.write(f'{dn}: {done}/{total}')
# completed-table toggle
show_tbl = st.sidebar.checkbox(
'Show completed table',
value=ui_state.get("show_completed", False) # safe default
)
ui_state["show_completed"] = show_tbl
if show_tbl:
st.sidebar.dataframe(
ratings_df[ratings_df.lang == lang_code][COLS],
use_container_width=True,
)
# visual review toggle
view_comp = st.sidebar.checkbox(
'View completed visually',
value=ui_state.get("view_completed", False) # safe default
)
ui_state["view_completed"] = view_comp
# persist sidebar choices immediately
write_json(UI_STATE_FILE, ui_state)
# βββββββββ CSV UPDATE --------------------------------------------------------
def update_csv(name, img=None, ocr=None, skip=False):
global ratings_df
if skip:
img = ocr = SKIP
mask = ratings_df.image_name == name
if mask.any():
if img is not None:
ratings_df.loc[mask, 'image_rating'] = img
if ocr is not None:
ratings_df.loc[mask, 'ocr_pred_rating'] = ocr
else:
ratings_df = pd.concat(
[
ratings_df,
pd.DataFrame(
[
{
'image_name': name,
'lang': lang_code,
'domain': name[:2],
'image_rating': img if img is not None else DEFAULT,
'ocr_pred_rating': ocr if ocr is not None else DEFAULT,
}
]
),
],
ignore_index=True,
)
ratings_df.to_csv(RATING_FILE, index=False)
# βββββββββ MAIN β PENDING SNIPPETS βββββββββββββββββββββββββββββββββββββββββββ
tabs = st.tabs(list(doc_categories.values()))
for (dk, dn), tab in zip(doc_categories.items(), tabs):
with tab:
all_imgs = sorted(
glob.glob(os.path.join(img_dir, lang_code, f'{dk}_{lang_code}_*'))
)
done_imgs = ratings_df[
(ratings_df.lang == lang_code) & (ratings_df.domain == dk)
].image_name.tolist()
pending = [p for p in all_imgs if os.path.basename(p) not in done_imgs]
if not pending:
st.success('All snippets done for this domain!')
else:
for file in pending:
name = os.path.basename(file)
stem = os.path.splitext(name)[0]
region = name.split('_')[-1].split('.')[0]
uid = '_'.join(name.split('_')[2:-1])
with st.container():
c1, c2 = st.columns([1, 2], gap='large')
# image + rating buttons
with c1:
st.image(Image.open(file))
st.markdown(
f'**File:** {name}<br>**UID:** {uid}<br>**Region:** {region}',
unsafe_allow_html=True,
)
b1, b2, b3, b4 = st.columns(4)
if b1.button('π', key=f'{stem}_img0'):
update_csv(name, img=0)
if b2.button('π', key=f'{stem}_img1'):
update_csv(name, img=1)
if b3.button('π', key=f'{stem}_img2'):
update_csv(name, img=2)
if b4.button('βοΈ', key=f'{stem}_skip'):
update_csv(name, skip=True)
# ocr texts + comparison buttons
with c2:
md15(
'GCP OCR',
gcp_text(os.path.join(gcp_dir, lang_code, f'{stem}.json')),
)
st.markdown('<hr>', unsafe_allow_html=True)
md15(
'Gemini OCR',
gem_text(os.path.join(gem_dir, lang_code, f'{stem}.json')),
)
st.markdown('<hr>', unsafe_allow_html=True)
t1, t2, t3 = st.columns(3)
if t1.button(
'π GCP', key=f'{stem}_ocr0'
):
update_csv(name, ocr=0)
if t2.button(
'π Equal', key=f'{stem}_ocr1'
):
update_csv(name, ocr=1)
if t3.button(
'π Gemini', key=f'{stem}_ocr2'
):
update_csv(name, ocr=2)
st.markdown('---')
# βββββββββ VISUALISE COMPLETED βββββββββββββββββββββββββββββββββββββββββββββββ
if ui_state["view_completed"]:
st.header('β
Completed snippets')
comp_tabs = st.tabs(list(doc_categories.values()))
for (dk, dn), ctab in zip(doc_categories.items(), comp_tabs):
with ctab:
done_rows = ratings_df[
(ratings_df.lang == lang_code)
& (ratings_df.domain == dk)
& (ratings_df.image_rating != DEFAULT)
& (ratings_df.ocr_pred_rating != DEFAULT)
]
if done_rows.empty:
st.info('Nothing completed here yet.')
continue
for _, row in done_rows.iterrows():
file = os.path.join(img_dir, lang_code, row.image_name)
stem = os.path.splitext(row.image_name)[0]
region = row.image_name.split('_')[-1].split('.')[0]
uid = '_'.join(row.image_name.split('_')[2:-1])
with st.container():
c1, c2 = st.columns([1, 2], gap='large')
# image + static badge
with c1:
st.image(Image.open(file))
st.markdown(
f'**File:** {row.image_name}<br>'
f'**UID:** {uid}<br>'
f'**Region:** {region}',
unsafe_allow_html=True,
)
img_badge = {0: 'π', 1: 'π', 2: 'π', SKIP: 'βοΈ'}[
row.image_rating
]
st.markdown(f'Image rating: **{img_badge}**')
# OCR texts + static badge
with c2:
md15(
'GCP OCR',
gcp_text(
os.path.join(gcp_dir, lang_code, f'{stem}.json')
),
)
st.markdown('<hr>', unsafe_allow_html=True)
md15(
'Gemini OCR',
gem_text(
os.path.join(gem_dir, lang_code, f'{stem}.json')
),
)
ocr_badge = {
0: 'GCP better',
1: 'Equal',
2: 'Gemini better',
SKIP: 'Skipped',
}[row.ocr_pred_rating]
st.success(f'Chosen: {ocr_badge}')
st.markdown('---')
|