File size: 9,460 Bytes
c9a97c2
 
 
 
 
cd01d35
c9a97c2
 
cd01d35
c9a97c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd01d35
c9a97c2
cd01d35
c9a97c2
cd01d35
c9a97c2
 
cd01d35
c9a97c2
 
 
 
 
cd01d35
c9a97c2
 
cd01d35
c9a97c2
 
 
 
 
 
cd01d35
c9a97c2
 
 
 
 
cd01d35
c9a97c2
 
 
 
 
 
 
 
cd01d35
c9a97c2
 
 
 
 
 
 
 
 
cd01d35
 
 
c9a97c2
 
 
 
 
 
 
 
 
 
cd01d35
c9a97c2
 
 
 
cd01d35
c9a97c2
 
 
 
 
 
 
 
 
 
 
cd01d35
c9a97c2
 
 
 
cd01d35
c9a97c2
 
cd01d35
c9a97c2
 
 
 
 
 
 
 
 
cd01d35
c9a97c2
 
 
 
 
cd01d35
c9a97c2
 
cd01d35
c9a97c2
 
 
 
cd01d35
 
c9a97c2
cd01d35
c9a97c2
 
 
 
 
 
 
 
 
 
 
 
 
cd01d35
 
c9a97c2
 
 
 
 
cd01d35
 
c9a97c2
 
cd01d35
c9a97c2
 
 
 
 
 
cd01d35
c9a97c2
 
 
9ec00c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a97c2
9ec00c3
c9a97c2
9ec00c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pandas as pd
import json
from datetime import datetime

def process_csv_to_json():
    # Read the CSV file
    df = pd.read_csv('src/record.csv')
    
    # Clean the data: remove empty rows, rename columns
    df = df.dropna(how='all')
    df = df.rename(columns={
        'dataset': 'Dataset',
        'llm': 'LLM',
        'score\n(EM)': 'Score',
        'pass rate': 'Pass rate',
        'Cost($)': 'Cost($)',
        'Eval Date': 'Eval Date',
        'framework': 'Framework',
        'X-shot': 'X-shot',
        'Nums': 'Samples',
        'All tokens': 'All tokens',
        'Total input tokens': 'Total input tokens',
        'Average input tokens': 'Average input tokens',
        'Total output tokens': 'Total output tokens',
        'Average output tokens': 'Average output tokens'
    })
    
    # Helper function: handle number strings with commas
    def parse_number(value):
        if pd.isna(value) or value == '-':
            return 0
        # Remove commas, convert to float, then to int
        return int(float(str(value).replace(',', '')))
    
    # Initialize result dictionary
    result = {
        "time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "results": {}
    }
    
    # Get all unique LLMs
    llms = df['LLM'].dropna().unique()
    
    # Iterate through each algorithm
    for algorithm in df['Algorithm'].dropna().unique():
        if not isinstance(algorithm, str):
            continue
            
        result['results'][algorithm] = {}
        
        # Process each LLM
        for llm in llms:
            llm_data = df[(df['Algorithm'] == algorithm) & (df['LLM'] == llm)]
            if llm_data.empty:
                continue
                
            # Create dictionary for each LLM
            result['results'][algorithm][llm] = {
                'META': {
                    'Algorithm': str(algorithm),
                    'LLM': str(llm),
                    'Eval Date': str(llm_data['Eval Date'].iloc[0])
                }
            }
            
            # Process each dataset
            for dataset in df['Dataset'].dropna().unique():
                if not isinstance(dataset, str):
                    continue
                    
                dataset_data = llm_data[llm_data['Dataset'] == dataset]
                
                if not dataset_data.empty:
                    data_row = dataset_data.iloc[0]
                    result['results'][algorithm][llm][dataset] = {
                        'Score': round(float(data_row['Score']) if data_row['Score'] != '-' else 0, 2),  # Keep two decimal places
                        'Pass rate': round(float(data_row['Pass rate']) / 100, 4) if data_row['Pass rate'] != '-' else 0.0,  # Convert to decimal and keep two decimal places
                        'Cost($)': float(data_row['Cost($)']) if pd.notnull(data_row['Cost($)']) and data_row['Cost($)'] != '-' else 0.0,
                        'Framework': str(data_row['Framework']) if 'Framework' in data_row and pd.notnull(data_row['Framework']) else '',
                        'X-shot': str(data_row['X-shot']) if pd.notnull(data_row['X-shot']) else '',
                        'Samples': parse_number(data_row['Samples']),
                        'All tokens': parse_number(data_row['All tokens']),
                        'Total input tokens': parse_number(data_row['Total input tokens']),
                        'Average input tokens': parse_number(data_row['Average input tokens']),
                        'Total output tokens': parse_number(data_row['Total output tokens']),
                        'Average output tokens': parse_number(data_row['Average output tokens'])
                    }
    
    # Check if each field exists
    required_fields = ['Score', 'Pass rate', 'Cost($)', 'Framework', 'X-shot', 'Samples', 'All tokens', 'Total input tokens', 'Average input tokens', 'Total output tokens', 'Average output tokens']
    
    for key, value in result['results'].items():
        for llm, datasets in value.items():
            # Check META information
            meta = datasets.get('META', {})
            if 'LLM' not in meta or 'Eval Date' not in meta:
                print(f"Missing META fields in algorithm '{key}' for LLM '{llm}'")
            
            for dataset, data in datasets.items():
                if dataset == 'META':
                    continue
                missing_fields = [field for field in required_fields if field not in data]
                if missing_fields:
                    print(f"Missing fields {missing_fields} in dataset '{dataset}' for LLM '{llm}' in algorithm '{key}'")
    
    # Save as JSON file
    with open('src/detail_math_score.json', 'w', encoding='utf-8') as f:
        json.dump(result, f, indent=4, ensure_ascii=False)

def process_csv_to_overall_json():
    # Read the CSV file
    df = pd.read_csv('src/record.csv')
    
    # Clean the data: remove empty rows, rename columns
    df = df.dropna(how='all')
    df = df.rename(columns={
        'dataset': 'Dataset',
        'llm': 'LLM',
        'score\n(EM)': 'Score',
        'Cost($)': 'Cost($)',
        'Eval Date': 'Eval Date'
    })
    
    # Initialize result dictionary
    result = {
        "time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "results": {}
    }
    
    # Get all unique LLMs
    llms = df['LLM'].dropna().unique()
    for llm in llms:
        # Process base algorithms
        for algorithm in df['Algorithm'].dropna().unique():
            if not isinstance(algorithm, str):
                continue
                
            # Add suffix for non-gpt-3.5-turbo models
            # Modification: add more information for llama models to ensure uniqueness
            algo_key = algorithm if llm == 'gpt-3.5-turbo' else f"{algorithm}-{llm}"
            # Check if the algorithm-LLM combination exists
            algo_data = df[(df['Algorithm'] == algorithm) & (df['LLM'] == llm)]
            if algo_data.empty:
                print(f"No data found for algorithm '{algorithm}' and LLM '{llm}'")
                continue
                
            result['results'][algo_key] = {
                "META": {
                    "Algorithm": algorithm,
                    "LLM": llm,
                    "Eval Date": str(algo_data['Eval Date'].iloc[0])
                }
            }
            
            # Process each dataset
            for dataset in ['gsm8k', 'AQuA', 'MATH-500']:
                dataset_data = df[(df['Algorithm'] == algorithm) & 
                                (df['Dataset'] == dataset) &
                                (df['LLM'] == llm)]
                if not dataset_data.empty:
                    result['results'][algo_key][dataset] = {
                        "Score": float(dataset_data['Score'].iloc[0]) if pd.notnull(dataset_data['Score'].iloc[0]) and dataset_data['Score'].iloc[0] != '-' else 0.0,
                        "Cost($)": float(dataset_data['Cost($)'].iloc[0]) if pd.notnull(dataset_data['Cost($)'].iloc[0]) and dataset_data['Cost($)'].iloc[0] != '-' else 0.0
                    }
                else:
                    # If the dataset is empty, ensure the key exists and set default values
                    result['results'][algo_key][dataset] = {
                        "Score": 0.0,
                        "Cost($)": 0.0
                    }


    # Save as JSON file
    with open('src/overall_math_score.json', 'w', encoding='utf-8') as f:
        json.dump(result, f, indent=4, ensure_ascii=False)

def process_multi_modal_csv():
    # Read the CSV file
    df = pd.read_csv('src/multi-modal.csv', skipinitialspace=True)
    
    # Clean and rename columns
    df.columns = df.columns.str.strip().str.replace('="', '').str.replace('"', '')
    df = df.rename(columns={
        'Agent': 'Agent',
        'VLMs': 'VLMs',
        'Score': 'Score',
        'Pass Rate': 'Pass Rate',
        'Total Input Tokens': 'Total Input Tokens',
        'Total Output Tokens': 'Total Output Tokens',
        'All Tokens': 'All Tokens'
    })
    
    # Strip unwanted characters from all string values
    df = df.applymap(lambda x: str(x).replace('="', '').replace('"', '').strip() if isinstance(x, str) else x)
    
    # Helper function to parse numbers with commas
    def parse_number(value):
        if pd.isna(value) or value == '-':
            return 0
        return int(float(str(value).replace(',', '')))
    
    # Process numeric fields
    df['Score'] = df['Score'].apply(lambda x: round(float(x), 2) if pd.notnull(x) and x != '-' else 0.0)
    df['Pass Rate'] = df['Pass Rate'].apply(lambda x: round(float(x) / 100, 4) if pd.notnull(x) and x != '-' else 0.0)
    df['Total Input Tokens'] = df['Total Input Tokens'].apply(parse_number)
    df['Total Output Tokens'] = df['Total Output Tokens'].apply(parse_number)
    df['All Tokens'] = df['All Tokens'].apply(parse_number)
    
    # Convert to Hugging Face-compatible format
    result = {
        "time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "multi_modal_results": df.to_dict(orient='records')
    }
    
    # Save as JSON file
    with open('src/multi_modal_results.json', 'w', encoding='utf-8') as f:
        json.dump(result, f, indent=4, ensure_ascii=False)

if __name__ == "__main__":
    # Generate JSON files in three formats
    process_csv_to_json()
    process_csv_to_overall_json()
    process_multi_modal_csv()