File size: 8,299 Bytes
cc6558b
d45d6cb
cc6558b
 
 
 
d45d6cb
cc6558b
 
 
d45d6cb
2e75204
 
d45d6cb
 
 
2e75204
a0df9d1
 
 
 
 
 
 
d45d6cb
 
 
 
 
 
 
 
 
a0df9d1
 
 
d45d6cb
 
cc6558b
2e75204
d45d6cb
 
 
 
2e75204
 
d45d6cb
2e75204
 
d45d6cb
 
 
 
 
 
 
 
 
 
2e75204
d45d6cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e75204
 
 
 
 
 
d45d6cb
cc6558b
 
d45d6cb
 
 
 
 
 
 
cc6558b
2e75204
cc6558b
2e75204
d45d6cb
 
cc6558b
d45d6cb
2e75204
cc6558b
 
 
d45d6cb
cc6558b
 
 
 
d45d6cb
cc6558b
 
d45d6cb
 
2e75204
d45d6cb
 
 
 
 
 
 
 
cc6558b
badf861
2e75204
 
 
 
 
badf861
d45d6cb
2e75204
d45d6cb
2e75204
d45d6cb
2e75204
d45d6cb
2e75204
d45d6cb
2e75204
d45d6cb
 
 
 
7c20325
 
 
 
 
 
 
cc6558b
 
d45d6cb
fdf7ba1
d45d6cb
cc6558b
 
2e75204
 
 
 
 
badf861
2e75204
d45d6cb
2e75204
d45d6cb
2e75204
 
d45d6cb
2e75204
 
cc6558b
bccebb5
2e75204
badf861
2e75204
 
 
 
 
 
 
d45d6cb
cc6558b
 
d45d6cb
 
cc6558b
 
 
 
 
 
d45d6cb
cc6558b
d45d6cb
 
cc6558b
 
2e75204
cc6558b
 
2e75204
d45d6cb
 
5fe972f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import spaces
import os
import time
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, list_repo_files
from src_inference.pipeline import FluxPipeline
from src_inference.lora_helper import set_single_lora

BASE_PATH = "black-forest-labs/FLUX.1-dev"
LOCAL_LORA_DIR = "./LoRAs"
CUSTOM_LORA_DIR = "./Custom_LoRAs"
os.makedirs(LOCAL_LORA_DIR, exist_ok=True)
os.makedirs(CUSTOM_LORA_DIR, exist_ok=True)

# ------------------ DEVICE SETUP ------------------ #
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
print(f"🚀 Running on device: {device}")
if device.type == "cpu":
    print("⚠️ WARNING: No CUDA detected. Running on CPU. Generation may be slow.")

# ------------------ Load Base LoRA ------------------ #
print("downloading OmniConsistency base LoRA …")
omni_consistency_path = hf_hub_download(
    repo_id="showlab/OmniConsistency",
    filename="OmniConsistency.safetensors",
    local_dir="./Model"
)

print("loading base pipeline …")
pipe = FluxPipeline.from_pretrained(
    BASE_PATH, torch_dtype=dtype
).to(device)

set_single_lora(pipe.transformer, omni_consistency_path,
                lora_weights=[1], cond_size=512)

# ------------------ Util ------------------ #
def clear_cache(transformer):
    for _, attn_processor in transformer.attn_processors.items():
        attn_processor.bank_kv.clear()

# ------------------ Generation ------------------ #
@spaces.GPU()
def generate_image(
    lora_name,
    custom_repo_id,
    prompt,
    uploaded_image,
    width, height,
    guidance_scale,
    num_inference_steps,
    seed
):
    width, height = int(width), int(height)
    generator = torch.Generator("cpu").manual_seed(seed)

    # Custom LoRA path
    if custom_repo_id and custom_repo_id.strip():
        repo_id = custom_repo_id.strip()
        try:
            files = list_repo_files(repo_id)
            print("using custom LoRA from:", repo_id)
            safetensors_files = [f for f in files if f.endswith(".safetensors")]
            print("found safetensors files:", safetensors_files)
            if not safetensors_files:
                raise ValueError("No .safetensors files were found in this repo")
            fname = safetensors_files[0]
            lora_path = hf_hub_download(
                repo_id=repo_id,
                filename=fname,
                local_dir=CUSTOM_LORA_DIR,
            )
        except Exception as e:
            raise gr.Error(f"Load custom LoRA failed: {e}")
    else:
        # Built-in LoRA: download only the one selected
        lora_filename = f"LoRAs/{lora_name}_rank128_bf16.safetensors"
        lora_path = hf_hub_download(
            repo_id="showlab/OmniConsistency",
            filename=lora_filename,
            local_dir=LOCAL_LORA_DIR
        )

    pipe.unload_lora_weights()
    try:
        pipe.load_lora_weights(
            os.path.dirname(lora_path),
            weight_name=os.path.basename(lora_path)
        )
    except Exception as e:
        raise gr.Error(f"Load LoRA failed: {e}")

    spatial_image = [uploaded_image.convert("RGB")]
    subject_images = []

    start = time.time()
    out_img = pipe(
        prompt,
        height=(height // 8) * 8,
        width=(width // 8) * 8,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        max_sequence_length=512,
        generator=generator,
        spatial_images=spatial_image,
        subject_images=subject_images,
        cond_size=512,
    ).images[0]
    print(f"inference time: {time.time()-start:.2f}s")

    clear_cache(pipe.transformer)
    return uploaded_image, out_img

# ------------------ Gradio UI ------------------ #
def create_interface():
    demo_lora_names = [
        "3D_Chibi", "American_Cartoon", "Chinese_Ink", "Clay_Toy",
        "Fabric", "Ghibli", "Irasutoya", "Jojo", "LEGO", "Line",
        "Macaron", "Oil_Painting", "Origami", "Paper_Cutting",
        "Picasso", "Pixel", "Poly", "Pop_Art", "Rick_Morty",
        "Snoopy", "Van_Gogh", "Vector"
    ]

    def update_trigger_word(lora_name, prompt):
        for name in demo_lora_names:
            trigger = " ".join(name.split("_")) + " style,"
            prompt = prompt.replace(trigger, "")
        new_trigger = " ".join(lora_name.split("_")) + " style,"
        return new_trigger + prompt

    examples = [
        ["3D_Chibi", "", "3D Chibi style, Two smiling colleagues high-five at a whiteboard filled with technical notes.", 
        Image.open("./test_imgs/00.png"), 680, 1024, 3.5, 24, 42],
        ["Clay_Toy", "", "Clay Toy style, A holiday-themed OpenAI team photo full of smiles and warmth.", 
        Image.open("./test_imgs/01.png"), 560, 1024, 3.5, 24, 42],
        ["American_Cartoon", "", "American Cartoon style, A dramatic subtitle moment from a classic film.",  
        Image.open("./test_imgs/02.png"), 568, 1024, 3.5, 24, 42],
        ["Origami", "", "Origami style, A Portugal football fan posing with Cristiano Ronaldo.", 
        Image.open("./test_imgs/03.png"), 768, 672, 3.5, 24, 42],
        ["Vector", "", "Vector style, The distracted boyfriend meme reimagined.", 
        Image.open("./test_imgs/04.png"), 512, 1024, 3.5, 24, 42]
    ]

    header = """
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/abs/2505.18445"><img src="https://img.shields.io/badge/ariXv-2505.18445-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/showlab/OmniConsistency"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/showlab/OmniConsistency"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
</div>
"""

    with gr.Blocks() as demo:
        gr.Markdown("# OmniConsistency LoRA Image Generation")
        gr.Markdown("Select a LoRA, enter a prompt, and upload an image to generate a new image with OmniConsistency.")
        gr.HTML(header)

        with gr.Row():
            with gr.Column(scale=1):
                image_input = gr.Image(type="pil", label="Upload Image")
                prompt_box = gr.Textbox(
                    label="Prompt",
                    value="3D Chibi style,",
                    info="Include a style like 'Ghibli style,' in your prompt for better results."
                )
                lora_dropdown = gr.Dropdown(
                    demo_lora_names, label="Select built-in LoRA")
                custom_repo_box = gr.Textbox(
                    label="Enter Custom LoRA",
                    placeholder="e.g. username/repo_name",
                    info="Overrides built-in LoRA if provided."
                )
                gen_btn = gr.Button("Generate")

            with gr.Column(scale=1):
                output_image = gr.ImageSlider(label="Generated Image")

        with gr.Accordion("Advanced Options", open=False):
            height_box = gr.Textbox(value="1024", label="Height")
            width_box = gr.Textbox(value="1024", label="Width")
            guidance_slider = gr.Slider(0.1, 20, value=3.5, step=0.1, label="Guidance Scale")
            steps_slider = gr.Slider(1, 50, value=25, step=1, label="Inference Steps")
            seed_slider = gr.Slider(1, 2_147_483_647, value=42, step=1, label="Seed")

        lora_dropdown.select(fn=update_trigger_word, inputs=[lora_dropdown, prompt_box], outputs=prompt_box)

        gr.Examples(
            examples=examples,
            inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
                    height_box, width_box, guidance_slider, steps_slider, seed_slider],
            outputs=output_image,
            fn=generate_image,
            cache_examples=False,
            label="Examples"
        )

        gen_btn.click(
            fn=generate_image,
            inputs=[lora_dropdown, custom_repo_box, prompt_box, image_input,
                    width_box, height_box, guidance_slider, steps_slider, seed_slider],
            outputs=output_image
        )

    return demo

# ------------------ Run ------------------ #
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(ssr_mode=False)