File size: 45,133 Bytes
3dd83a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519f2b2
3aab296
 
 
 
 
e957e17
 
 
085a78a
 
3dd83a2
e957e17
 
 
 
085a78a
 
 
 
 
 
 
 
 
 
 
 
e957e17
 
 
3aab296
3dd83a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e957e17
 
 
 
 
 
 
 
 
 
3aab296
 
e957e17
3aab296
 
e957e17
3aab296
 
e957e17
 
3aab296
e957e17
3aab296
e957e17
3aab296
 
e957e17
3aab296
e957e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aab296
e957e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aab296
e957e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aab296
e957e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aab296
e957e17
3aab296
e957e17
 
3aab296
e957e17
3aab296
 
 
e957e17
 
3aab296
 
e957e17
 
 
3aab296
 
 
 
 
 
e957e17
3aab296
 
 
 
 
 
 
 
 
 
 
 
e957e17
 
3aab296
 
 
e957e17
3aab296
 
 
 
 
e957e17
3aab296
 
 
e957e17
3aab296
 
e957e17
 
3aab296
e957e17
 
 
 
 
3aab296
e957e17
 
3aab296
e957e17
3aab296
e957e17
 
3aab296
e957e17
 
 
 
3aab296
e957e17
 
3aab296
e957e17
 
 
 
085a78a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e957e17
085a78a
 
e957e17
 
3aab296
e957e17
 
 
 
 
 
 
 
3aab296
085a78a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e957e17
 
 
 
3aab296
e957e17
 
3aab296
e957e17
3aab296
 
085a78a
 
3aab296
e957e17
 
 
 
 
3dd83a2
085a78a
3dd83a2
 
 
 
 
 
085a78a
e957e17
 
085a78a
e957e17
 
3dd83a2
085a78a
 
e957e17
 
 
3dd83a2
e957e17
 
085a78a
3aab296
e957e17
 
 
3dd83a2
e957e17
085a78a
 
 
 
 
 
e957e17
 
 
3aab296
e957e17
085a78a
 
e957e17
085a78a
3aab296
e957e17
 
 
 
 
 
 
 
 
 
 
 
 
 
3aab296
e957e17
3aab296
e957e17
3aab296
 
e957e17
3aab296
 
e957e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aab296
 
e957e17
 
 
 
 
 
 
 
 
 
 
 
3aab296
 
 
e957e17
 
 
3aab296
e957e17
3aab296
e957e17
 
 
3aab296
e957e17
3aab296
 
e957e17
3aab296
e957e17
 
 
 
 
 
 
 
 
 
 
 
3aab296
 
e957e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519f2b2
e957e17
519f2b2
3dd83a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
# import gradio as gr
# import numpy as np
# import torch
# from PIL import Image
# import matplotlib.pyplot as plt
# from transformers import pipeline
# import warnings
# from io import BytesIO
# import importlib.util
# import os
# import openai

# # Suppress warnings
# warnings.filterwarnings("ignore")

# # Set up OpenAI API key
# api_key = os.getenv('OPENAI_API_KEY')
# if not api_key:
#     print("No OpenAI API key found - will use simple keyword extraction")
# elif not api_key.startswith("sk-proj-") and not api_key.startswith("sk-"):
#     print("API key found but doesn't look correct")
# elif api_key.strip() != api_key:
#     print("API key has leading or trailing whitespace - please fix it.")
# else:
#     print("OpenAI API key found and looks good!")
#     openai.api_key = api_key

# # Global variables for models
# detector = None
# sam_predictor = None

# def load_detector():
#     """Load the OWL-ViT detector once and cache it."""
#     global detector
#     if detector is None:
#         print("Loading OWL-ViT model...")
#         detector = pipeline(
#             model="google/owlv2-base-patch16-ensemble", 
#             task="zero-shot-object-detection",
#             device=0 if torch.cuda.is_available() else -1
#         )
#         print("OWL-ViT model loaded successfully!")

# def install_sam2_if_needed():
#     """Check if SAM2 is installed, and install it if needed."""
#     if importlib.util.find_spec("sam2") is not None:
#         print("SAM2 is already installed.")
#         return True
    
#     try:
#         import subprocess
#         import sys
#         print("Installing SAM2 from GitHub...")
#         subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/facebookresearch/sam2.git"])
#         print("SAM2 installed successfully.")
#         return True
#     except Exception as e:
#         print(f"Error installing SAM2: {e}")
#         return False

# def load_sam_predictor():
#     """Load SAM2 predictor if available."""
#     global sam_predictor
#     if sam_predictor is None:
#         if install_sam2_if_needed():
#             try:
#                 from sam2.sam2_image_predictor import SAM2ImagePredictor
#                 print("Loading SAM2 model...")
#                 sam_predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
#                 device = "cuda" if torch.cuda.is_available() else "cpu"
#                 sam_predictor.model.to(device)
#                 print(f"SAM2 model loaded successfully on {device}!")
#                 return True
#             except Exception as e:
#                 print(f"Error loading SAM2: {e}")
#                 return False
#     return sam_predictor is not None

# def detect_objects_owlv2(text_query, image, threshold=0.1):
#     """Detect objects using OWL-ViT."""
#     try:
#         load_detector()
        
#         if isinstance(image, np.ndarray):
#             image = Image.fromarray(image)
        
#         # Clean up the text query
#         query_terms = [term.strip() for term in text_query.split(',') if term.strip()]
#         if not query_terms:
#             query_terms = ["object"]
        
#         print(f"Detecting: {query_terms}")
#         predictions = detector(image, candidate_labels=query_terms)
        
#         detections = []
#         for pred in predictions:
#             if pred['score'] >= threshold:
#                 bbox = pred['box']
#                 width, height = image.size
#                 normalized_bbox = [
#                     bbox['xmin'] / width,
#                     bbox['ymin'] / height, 
#                     bbox['xmax'] / width,
#                     bbox['ymax'] / height
#                 ]
                
#                 detection = {
#                     'label': pred['label'],
#                     'bbox': normalized_bbox,
#                     'score': pred['score']
#                 }
#                 detections.append(detection)
        
#         return detections, image
#     except Exception as e:
#         print(f"Detection error: {e}")
#         return [], image

# def generate_masks_sam2(detections, image):
#     """Generate segmentation masks using SAM2."""
#     try:
#         if not load_sam_predictor():
#             print("SAM2 not available, skipping mask generation")
#             return detections
        
#         if isinstance(image, np.ndarray):
#             image = Image.fromarray(image)
        
#         image_np = np.array(image.convert("RGB"))
#         H, W = image_np.shape[:2]
        
#         # Set image for SAM2
#         sam_predictor.set_image(image_np)
        
#         # Convert normalized bboxes to pixel coordinates
#         input_boxes = []
#         for det in detections:
#             x1, y1, x2, y2 = det['bbox']
#             input_boxes.append([int(x1 * W), int(y1 * H), int(x2 * W), int(y2 * H)])
        
#         if not input_boxes:
#             return detections
        
#         input_boxes = np.array(input_boxes)
        
#         print(f"Generating masks for {len(input_boxes)} detections...")
        
#         with torch.inference_mode():
#             device = "cuda" if torch.cuda.is_available() else "cpu"
#             if device == "cuda":
#                 with torch.autocast("cuda", dtype=torch.bfloat16):
#                     masks, scores, _ = sam_predictor.predict(
#                         point_coords=None, 
#                         point_labels=None,
#                         box=input_boxes, 
#                         multimask_output=False
#                     )
#             else:
#                 masks, scores, _ = sam_predictor.predict(
#                     point_coords=None, 
#                     point_labels=None,
#                     box=input_boxes, 
#                     multimask_output=False
#                 )
        
#         # Add masks to detections
#         results = []
#         for i, det in enumerate(detections):
#             new_det = det.copy()
#             mask = masks[i]
#             if mask.ndim == 3:
#                 mask = mask[0]  # Remove batch dimension if present
#             new_det['mask'] = mask.astype(np.uint8)
#             results.append(new_det)
        
#         print(f"Successfully generated {len(results)} masks")
#         return results
        
#     except Exception as e:
#         print(f"SAM2 mask generation error: {e}")
#         return detections

# def visualize_detections_with_masks(image, detections_with_masks, show_labels=True, show_boxes=True):
#     """
#     Visualize the detections with their segmentation masks.
#     Returns PIL Image instead of showing plot.
#     """
#     # Load the image
#     if isinstance(image, np.ndarray):
#         image = Image.fromarray(image)
#     image_np = np.array(image.convert("RGB"))
    
#     # Get image dimensions
#     height, width = image_np.shape[:2]
    
#     # Create figure
#     fig = plt.figure(figsize=(12, 8))
#     plt.imshow(image_np)
    
#     # Define colors for different instances
#     colors = plt.cm.tab10(np.linspace(0, 1, 10))
    
#     # Plot each detection
#     for i, detection in enumerate(detections_with_masks):
#         # Get bbox, mask, label, and score
#         bbox = detection['bbox']
#         label = detection['label']
#         score = detection['score']
        
#         # Convert normalized bbox to pixel coordinates
#         x1, y1, x2, y2 = bbox
#         x1_px, y1_px = int(x1 * width), int(y1 * height)
#         x2_px, y2_px = int(x2 * width), int(y2 * height)
        
#         # Color for this instance
#         color = colors[i % len(colors)]
        
#         # Display mask with transparency if available
#         if 'mask' in detection:
#             mask = detection['mask']
#             mask_color = np.zeros((height, width, 4), dtype=np.float32)
#             mask_color[mask > 0] = [color[0], color[1], color[2], 0.5]
#             plt.imshow(mask_color)
        
#         # Draw bounding box if requested
#         if show_boxes:
#             rect = plt.Rectangle((x1_px, y1_px), x2_px - x1_px, y2_px - y1_px,
#                                 fill=False, edgecolor=color, linewidth=2)
#             plt.gca().add_patch(rect)
        
#         # Add label and score if requested
#         if show_labels:
#             plt.text(x1_px, y1_px - 5, f"{label}: {score:.2f}",
#                     color='white', bbox=dict(facecolor=color, alpha=0.8), fontsize=10)
    
#     plt.axis('off')
#     plt.tight_layout()
    
#     # Convert to PIL Image using the correct method
#     buf = BytesIO()
#     plt.savefig(buf, format='png', bbox_inches='tight', dpi=150)
#     plt.close(fig)
#     buf.seek(0)
    
#     result_image = Image.open(buf)
#     return result_image

# def visualize_detections(image, detections, show_labels=True):
#     """
#     Visualize object detections with bounding boxes only.
#     Returns PIL Image instead of showing plot.
#     """
#     # Load the image
#     if isinstance(image, np.ndarray):
#         image = Image.fromarray(image)
#     image_np = np.array(image.convert("RGB"))
    
#     # Get image dimensions
#     height, width = image_np.shape[:2]
    
#     # Create figure
#     fig = plt.figure(figsize=(12, 8))
#     plt.imshow(image_np)
    
#     # If we have detections, draw them
#     if detections:
#         # Define colors for different instances
#         colors = plt.cm.tab10(np.linspace(0, 1, 10))
        
#         # Plot each detection
#         for i, detection in enumerate(detections):
#             # Get bbox, label, and score
#             bbox = detection['bbox']
#             label = detection['label']
#             score = detection['score']
            
#             # Convert normalized bbox to pixel coordinates
#             x1, y1, x2, y2 = bbox
#             x1_px, y1_px = int(x1 * width), int(y1 * height)
#             x2_px, y2_px = int(x2 * width), int(y2 * height)
            
#             # Color for this instance
#             color = colors[i % len(colors)]
            
#             # Draw bounding box
#             rect = plt.Rectangle((x1_px, y1_px), x2_px - x1_px, y2_px - y1_px,
#                                 fill=False, edgecolor=color, linewidth=2)
#             plt.gca().add_patch(rect)
            
#             # Add label and score if requested
#             if show_labels:
#                 plt.text(x1_px, y1_px - 5, f"{label}: {score:.2f}",
#                         color='white', bbox=dict(facecolor=color, alpha=0.8), fontsize=10)
    
#     # Set title
#     plt.title(f'Object Detection Results ({len(detections)} objects found)', fontsize=14, pad=20)
#     plt.axis('off')
#     plt.tight_layout()
    
#     # Convert to PIL Image
#     buf = BytesIO()
#     plt.savefig(buf, format='png', bbox_inches='tight', dpi=150)
#     plt.close(fig)
#     buf.seek(0)
    
#     result_image = Image.open(buf)
#     return result_image

# def get_optimized_prompt(query_text):
#     """
#     Use OpenAI to convert natural language query into optimal detection prompt.
#     Falls back to simple extraction if OpenAI is not available.
#     """
#     if not query_text.strip():
#         return "object"
    
#     # Try OpenAI first if API key is available
#     if hasattr(openai, 'api_key') and openai.api_key:
#         try:
#             response = openai.chat.completions.create(
#                 model="gpt-3.5-turbo",
#                 messages=[{
#                     "role": "system", 
#                     "content": """You are an expert at converting natural language queries into precise object detection terms. 

# RULES:
# 1. Return ONLY 1-2 words maximum that describe the object to detect
# 2. Use the exact object name from the user's query
# 3. For people: use "person" 
# 4. For vehicles: use "car", "truck", "bicycle"
# 5. Do NOT include counting words, articles, or explanations
# 6. Examples:
#    - "How many cacao fruits are there?" β†’ "cacao fruit"
#    - "Count the corn in the field" β†’ "corn"
#    - "Find all people" β†’ "person"
#    - "How many cacao pods?" β†’ "cacao pod" 
#    - "Detect cars" β†’ "car"
#    - "Count bananas" β†’ "banana"
#    - "How many apples?" β†’ "apple"

# Return ONLY the object name, nothing else."""
#                 }, {
#                     "role": "user", 
#                     "content": query_text
#                 }],
#                 temperature=0.0,  # Make it deterministic
#                 max_tokens=5      # Force brevity
#             )
            
#             llm_result = response.choices[0].message.content.strip().lower()
#             # Extra safety: take only first 2 words
#             words = llm_result.split()[:2]
#             final_result = " ".join(words)
            
#             print(f"πŸ€– OpenAI suggested prompt: '{final_result}'")
#             return final_result
            
#         except Exception as e:
#             print(f"OpenAI error: {e}, falling back to keyword extraction")
    
#     # Fallback to simple keyword extraction (no hardcoded fruits)
#     print("πŸ”€ Using keyword extraction (no OpenAI)")
#     query_lower = query_text.lower().replace("?", "").strip()
    
#     # Look for common patterns and extract object names
#     if "how many" in query_lower:
#         parts = query_lower.split("how many")
#         if len(parts) > 1:
#             remaining = parts[1].strip()
#             remaining = remaining.replace("are", "").replace("in", "").replace("the", "").replace("image", "").replace("there", "").strip()
#             # Take first meaningful word(s)
#             words = remaining.split()[:2]
#             search_terms = " ".join(words) if words else "object"
#         else:
#             search_terms = "object"
#     elif "count" in query_lower:
#         parts = query_lower.split("count")
#         if len(parts) > 1:
#             remaining = parts[1].strip()
#             remaining = remaining.replace("the", "").replace("in", "").replace("image", "").strip()
#             words = remaining.split()[:2]
#             search_terms = " ".join(words) if words else "object"
#         else:
#             search_terms = "object"
#     elif "find" in query_lower:
#         parts = query_lower.split("find")
#         if len(parts) > 1:
#             remaining = parts[1].strip()
#             remaining = remaining.replace("all", "").replace("the", "").replace("in", "").replace("image", "").strip()
#             words = remaining.split()[:2]
#             search_terms = " ".join(words) if words else "object"
#         else:
#             search_terms = "object"
#     else:
#         # Extract first 1-2 meaningful words from the query
#         words = query_lower.split()
#         meaningful_words = [w for w in words if w not in ["how", "many", "are", "in", "the", "image", "find", "count", "detect", "there", "this", "that", "a", "an"]]
#         search_terms = " ".join(meaningful_words[:2]) if meaningful_words else "object"
    
#     return search_terms

# def is_count_query(text):
#     """Check if the query is asking for counting."""
#     count_keywords = ["how many", "count", "number of", "total"]
#     return any(keyword in text.lower() for keyword in count_keywords)

# def detection_pipeline(query_text, image, threshold, use_sam):
#     """Main detection pipeline."""
#     if image is None:
#         return None, "⚠️ Please upload an image first!"
    
#     try:
#         # Use OpenAI or fallback to get optimized search terms
#         search_terms = get_optimized_prompt(query_text)
        
#         print(f"Processing query: '{query_text}' -> searching for: '{search_terms}'")
        
#         # Run object detection
#         detections, processed_image = detect_objects_owlv2(search_terms, image, threshold)
        
#         print(f"Found {len(detections)} detections")
#         for i, det in enumerate(detections):
#             print(f"Detection {i+1}: {det['label']} (score: {det['score']:.3f})")
        
#         # Generate masks if requested
#         if use_sam and detections:
#             print("Generating SAM2 masks...")
#             detections = generate_masks_sam2(detections, processed_image)
        
#         # Create visualization using your proven functions
#         print("Creating visualization...")
#         if use_sam and detections and 'mask' in detections[0]:
#             result_image = visualize_detections_with_masks(
#                 processed_image, 
#                 detections, 
#                 show_labels=True, 
#                 show_boxes=True
#             )
#             print("Created visualization with masks")
#         else:
#             result_image = visualize_detections(
#                 processed_image, 
#                 detections, 
#                 show_labels=True
#             )
#             print("Created visualization with bounding boxes only")
        
#         # Make sure we have a valid result image
#         if result_image is None:
#             print("Warning: result_image is None, returning original image")
#             result_image = processed_image
        
#         # Generate summary
#         count = len(detections)
        
#         summary_parts = []
#         summary_parts.append(f"πŸ—£οΈ **Original Query**: '{query_text}'")
#         summary_parts.append(f"πŸ€– **AI-Optimized Search**: '{search_terms}'")
#         summary_parts.append(f"βš™οΈ **Threshold**: {threshold}")
#         summary_parts.append(f"🎭 **SAM2 Segmentation**: {'Enabled' if use_sam else 'Disabled'}")
        
#         if count > 0:
#             if is_count_query(query_text):
#                 summary_parts.append(f"πŸ”’ **Answer: {count} {search_terms}(s) found**")
#             else:
#                 summary_parts.append(f"βœ… **Found {count} {search_terms}(s)**")
            
#             # Show detection details
#             for i, det in enumerate(detections[:5]):  # Show first 5
#                 summary_parts.append(f"   β€’ Detection {i+1}: {det['score']:.3f} confidence")
#             if count > 5:
#                 summary_parts.append(f"   β€’ ... and {count-5} more detections")
#         else:
#             summary_parts.append(f"❌ **No {search_terms}(s) detected**")
#             summary_parts.append("πŸ’‘ Try lowering the threshold or using different terms")
        
#         summary_text = "\n".join(summary_parts)
        
#         return result_image, summary_text
        
#     except Exception as e:
#         error_msg = f"❌ **Error**: {str(e)}"
#         return image, error_msg

# # ----------------
# # GRADIO INTERFACE
# # ----------------
# with gr.Blocks(title="πŸ” Object Detection & Segmentation") as demo:
#     gr.Markdown("""
#     # πŸ” Object Detection & Segmentation App
    
#     **Simple and powerful object detection using OWL-ViT + SAM2**
    
#     1. **Enter your query** (e.g., "How many people?", "Find cars", "Count apples")
#     2. **Upload an image**
#     3. **Adjust detection sensitivity**
#     4. **Toggle SAM2 segmentation** for precise masks
#     5. **Click Detect!**
#     """)
    
#     with gr.Row():
#         with gr.Column(scale=1):
#             query_input = gr.Textbox(
#                 label="πŸ—£οΈ What do you want to detect?",
#                 placeholder="e.g., 'How many people are in the image?'",
#                 value="How many people are in the image?",
#                 lines=2
#             )
            
#             image_input = gr.Image(
#                 label="πŸ“Έ Upload your image",
#                 type="numpy"
#             )
            
#             with gr.Row():
#                 threshold_slider = gr.Slider(
#                     minimum=0.01,
#                     maximum=0.9,
#                     value=0.1,
#                     step=0.01,
#                     label="🎚️ Detection Sensitivity"
#                 )
                
#                 sam_checkbox = gr.Checkbox(
#                     label="🎭 Enable SAM2 Segmentation",
#                     value=False,
#                     info="Generate precise pixel masks"
#                 )
            
#             detect_button = gr.Button("πŸ” Detect Objects!", variant="primary", size="lg")
    
#         with gr.Column(scale=1):
#             output_image = gr.Image(label="🎯 Detection Results")
#             output_text = gr.Textbox(
#                 label="πŸ“Š Detection Summary", 
#                 lines=12,
#                 show_copy_button=True
#             )
    
#     # Event handlers
#     detect_button.click(
#         fn=detection_pipeline,
#         inputs=[query_input, image_input, threshold_slider, sam_checkbox],
#         outputs=[output_image, output_text]
#     )
    
#     # Also trigger on Enter in text box
#     query_input.submit(
#         fn=detection_pipeline,
#         inputs=[query_input, image_input, threshold_slider, sam_checkbox],
#         outputs=[output_image, output_text]
#     )
    
#     # Examples section
#     gr.Examples(
#         examples=[
#             ["How many people are in the image?", None, 0.1, False],
#             ["Find all cars", None, 0.15, True],
#             ["Count the bottles", None, 0.1, True],
#             ["Detect dogs", None, 0.2, False],
#             ["How many phones?", None, 0.15, True],
#         ],
#         inputs=[query_input, image_input, threshold_slider, sam_checkbox],
#     )

# # Launch
# if __name__ == "__main__":
#     demo.launch(server_name="0.0.0.0", server_port=7860, share=True)


import gradio as gr
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt
from transformers import pipeline
import warnings
from io import BytesIO
import importlib.util
import os
import openai
from typing import List, Dict

# Suppress warnings
warnings.filterwarnings("ignore")

# Set up OpenAI API key
api_key = os.getenv('OPENAI_API_KEY')
if not api_key:
    print("No OpenAI API key found - will use simple keyword extraction")
elif not api_key.startswith("sk-proj-") and not api_key.startswith("sk-"):
    print("API key found but doesn't look correct")
elif api_key.strip() != api_key:
    print("API key has leading or trailing whitespace - please fix it.")
else:
    print("OpenAI API key found and looks good!")
    openai.api_key = api_key

# Global variables for models
detector = None
sam_predictor = None

def calculate_bbox_area(bbox):
    """Calculate the area of a normalized bounding box."""
    x1, y1, x2, y2 = bbox
    width = abs(x2 - x1)
    height = abs(y2 - y1)
    return width * height

def filter_bbox_outliers(detections: List[Dict], 
                        method: str = 'zscore', 
                        threshold: float = 2.0,
                        min_score: float = 0.0) -> List[Dict]:
    """
    Filter out outlier bounding boxes based on their area.
    
    Args:
        detections: List of detection dictionaries with 'bbox', 'label', 'score'
        method: 'iqr' (Interquartile Range) or 'zscore' (Z-score) 
        threshold: Multiplier for IQR method or Z-score threshold
        min_score: Minimum confidence score to keep detection
        
    Returns:
        Filtered list of detections
    """
    if not detections:
        return detections
    
    # Filter by minimum score first
    detections = [det for det in detections if det['score'] >= min_score]
    
    if len(detections) <= 2:  # Need at least 3 detections for meaningful outlier removal
        return detections
    
    # Calculate areas for all bounding boxes
    areas = [calculate_bbox_area(det['bbox']) for det in detections]
    areas = np.array(areas)
    
    if method == 'iqr':
        # IQR method
        q1 = np.percentile(areas, 25)
        q3 = np.percentile(areas, 75)
        iqr = q3 - q1
        
        lower_bound = q1 - threshold * iqr
        upper_bound = q3 + threshold * iqr
        
        valid_indices = np.where((areas >= lower_bound) & (areas <= upper_bound))[0]
        
    elif method == 'zscore':
        # Z-score method
        if np.std(areas) == 0:  # All areas are the same
            return detections
            
        mean_area = np.mean(areas)
        std_area = np.std(areas)
        
        z_scores = np.abs((areas - mean_area) / std_area)
        valid_indices = np.where(z_scores <= threshold)[0]
        
    else:
        raise ValueError("Method must be 'iqr' or 'zscore'")
    
    # Return filtered detections
    filtered_detections = [detections[i] for i in valid_indices]
    
    print(f"Original detections: {len(detections)}")
    print(f"Filtered detections: {len(filtered_detections)}")
    print(f"Removed {len(detections) - len(filtered_detections)} outliers")
    
    return filtered_detections
    """Load the OWL-ViT detector once and cache it."""
    global detector
    if detector is None:
        print("Loading OWL-ViT model...")
        detector = pipeline(
            model="google/owlv2-base-patch16-ensemble", 
            task="zero-shot-object-detection",
            device=0 if torch.cuda.is_available() else -1
        )
        print("OWL-ViT model loaded successfully!")

def install_sam2_if_needed():
    """Check if SAM2 is installed, and install it if needed."""
    if importlib.util.find_spec("sam2") is not None:
        print("SAM2 is already installed.")
        return True
    
    try:
        import subprocess
        import sys
        print("Installing SAM2 from GitHub...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", "git+https://github.com/facebookresearch/sam2.git"])
        print("SAM2 installed successfully.")
        return True
    except Exception as e:
        print(f"Error installing SAM2: {e}")
        return False

def load_sam_predictor():
    """Load SAM2 predictor if available."""
    global sam_predictor
    if sam_predictor is None:
        if install_sam2_if_needed():
            try:
                from sam2.sam2_image_predictor import SAM2ImagePredictor
                print("Loading SAM2 model...")
                sam_predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
                device = "cuda" if torch.cuda.is_available() else "cpu"
                sam_predictor.model.to(device)
                print(f"SAM2 model loaded successfully on {device}!")
                return True
            except Exception as e:
                print(f"Error loading SAM2: {e}")
                return False
    return sam_predictor is not None

def detect_objects_owlv2(text_query, image, threshold=0.1):
    """Detect objects using OWL-ViT."""
    try:
        load_detector()
        
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        
        # Clean up the text query
        query_terms = [term.strip() for term in text_query.split(',') if term.strip()]
        if not query_terms:
            query_terms = ["object"]
        
        print(f"Detecting: {query_terms}")
        predictions = detector(image, candidate_labels=query_terms)
        
        detections = []
        for pred in predictions:
            if pred['score'] >= threshold:
                bbox = pred['box']
                width, height = image.size
                normalized_bbox = [
                    bbox['xmin'] / width,
                    bbox['ymin'] / height, 
                    bbox['xmax'] / width,
                    bbox['ymax'] / height
                ]
                
                detection = {
                    'label': pred['label'],
                    'bbox': normalized_bbox,
                    'score': pred['score']
                }
                detections.append(detection)
        
        return detections, image
    except Exception as e:
        print(f"Detection error: {e}")
        return [], image

def generate_masks_sam2(detections, image):
    """Generate segmentation masks using SAM2."""
    try:
        if not load_sam_predictor():
            print("SAM2 not available, skipping mask generation")
            return detections
        
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        
        image_np = np.array(image.convert("RGB"))
        H, W = image_np.shape[:2]
        
        # Set image for SAM2
        sam_predictor.set_image(image_np)
        
        # Convert normalized bboxes to pixel coordinates
        input_boxes = []
        for det in detections:
            x1, y1, x2, y2 = det['bbox']
            input_boxes.append([int(x1 * W), int(y1 * H), int(x2 * W), int(y2 * H)])
        
        if not input_boxes:
            return detections
        
        input_boxes = np.array(input_boxes)
        
        print(f"Generating masks for {len(input_boxes)} detections...")
        
        with torch.inference_mode():
            device = "cuda" if torch.cuda.is_available() else "cpu"
            if device == "cuda":
                with torch.autocast("cuda", dtype=torch.bfloat16):
                    masks, scores, _ = sam_predictor.predict(
                        point_coords=None, 
                        point_labels=None,
                        box=input_boxes, 
                        multimask_output=False
                    )
            else:
                masks, scores, _ = sam_predictor.predict(
                    point_coords=None, 
                    point_labels=None,
                    box=input_boxes, 
                    multimask_output=False
                )
        
        # Add masks to detections
        results = []
        for i, det in enumerate(detections):
            new_det = det.copy()
            mask = masks[i]
            if mask.ndim == 3:
                mask = mask[0]  # Remove batch dimension if present
            new_det['mask'] = mask.astype(np.uint8)
            results.append(new_det)
        
        print(f"Successfully generated {len(results)} masks")
        return results
        
    except Exception as e:
        print(f"SAM2 mask generation error: {e}")
        return detections

def visualize_detections_with_masks(image, detections_with_masks, show_labels=True, show_boxes=True):
    """
    Visualize the detections with their segmentation masks.
    Returns PIL Image instead of showing plot.
    """
    # Load the image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    image_np = np.array(image.convert("RGB"))
    
    # Get image dimensions
    height, width = image_np.shape[:2]
    
    # Create figure
    fig = plt.figure(figsize=(12, 8))
    plt.imshow(image_np)
    
    # Define colors for different instances
    colors = plt.cm.tab10(np.linspace(0, 1, 10))
    
    # Plot each detection
    for i, detection in enumerate(detections_with_masks):
        # Get bbox, mask, label, and score
        bbox = detection['bbox']
        label = detection['label']
        score = detection['score']
        
        # Convert normalized bbox to pixel coordinates
        x1, y1, x2, y2 = bbox
        x1_px, y1_px = int(x1 * width), int(y1 * height)
        x2_px, y2_px = int(x2 * width), int(y2 * height)
        
        # Color for this instance
        color = colors[i % len(colors)]
        
        # Display mask with transparency if available
        if 'mask' in detection:
            mask = detection['mask']
            mask_color = np.zeros((height, width, 4), dtype=np.float32)
            mask_color[mask > 0] = [color[0], color[1], color[2], 0.5]
            plt.imshow(mask_color)
        
        # Draw bounding box if requested
        if show_boxes:
            rect = plt.Rectangle((x1_px, y1_px), x2_px - x1_px, y2_px - y1_px,
                                fill=False, edgecolor=color, linewidth=2)
            plt.gca().add_patch(rect)
        
        # Add label and score if requested
        if show_labels:
            plt.text(x1_px, y1_px - 5, f"{label}: {score:.2f}",
                    color='white', bbox=dict(facecolor=color, alpha=0.8), fontsize=10)
    
    plt.axis('off')
    plt.tight_layout()
    
    # Convert to PIL Image using the correct method
    buf = BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', dpi=150)
    plt.close(fig)
    buf.seek(0)
    
    result_image = Image.open(buf)
    return result_image

def visualize_detections(image, detections, show_labels=True):
    """
    Visualize object detections with bounding boxes only.
    Returns PIL Image instead of showing plot.
    """
    # Load the image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    image_np = np.array(image.convert("RGB"))
    
    # Get image dimensions
    height, width = image_np.shape[:2]
    
    # Create figure
    fig = plt.figure(figsize=(12, 8))
    plt.imshow(image_np)
    
    # If we have detections, draw them
    if detections:
        # Define colors for different instances
        colors = plt.cm.tab10(np.linspace(0, 1, 10))
        
        # Plot each detection
        for i, detection in enumerate(detections):
            # Get bbox, label, and score
            bbox = detection['bbox']
            label = detection['label']
            score = detection['score']
            
            # Convert normalized bbox to pixel coordinates
            x1, y1, x2, y2 = bbox
            x1_px, y1_px = int(x1 * width), int(y1 * height)
            x2_px, y2_px = int(x2 * width), int(y2 * height)
            
            # Color for this instance
            color = colors[i % len(colors)]
            
            # Draw bounding box
            rect = plt.Rectangle((x1_px, y1_px), x2_px - x1_px, y2_px - y1_px,
                                fill=False, edgecolor=color, linewidth=2)
            plt.gca().add_patch(rect)
            
            # Add label and score if requested
            if show_labels:
                plt.text(x1_px, y1_px - 5, f"{label}: {score:.2f}",
                        color='white', bbox=dict(facecolor=color, alpha=0.8), fontsize=10)
    
    # Set title
    plt.title(f'Object Detection Results ({len(detections)} objects found)', fontsize=14, pad=20)
    plt.axis('off')
    plt.tight_layout()
    
    # Convert to PIL Image
    buf = BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', dpi=150)
    plt.close(fig)
    buf.seek(0)
    
    result_image = Image.open(buf)
    return result_image

def get_optimized_prompt(query_text):
    """
    Use OpenAI to convert natural language query into optimal detection prompt.
    Falls back to simple extraction if OpenAI is not available.
    """
    if not query_text.strip():
        return "object"
    
    # Try OpenAI first if API key is available
    if hasattr(openai, 'api_key') and openai.api_key:
        try:
            response = openai.chat.completions.create(
                model="gpt-3.5-turbo",
                messages=[{
                    "role": "system", 
                    "content": """You are an expert at converting natural language queries into precise object detection terms. 

RULES:
1. Return ONLY 1-2 words maximum that describe the object to detect
2. Use the exact object name from the user's query
3. For people: use "person" 
4. For vehicles: use "car", "truck", "bicycle"
5. Do NOT include counting words, articles, or explanations
6. Examples:
   - "How many cacao fruits are there?" β†’ "cacao fruit"
   - "Count the corn in the field" β†’ "corn"
   - "Find all people" β†’ "person"
   - "How many cacao pods?" β†’ "cacao pod" 
   - "Detect cars" β†’ "car"
   - "Count bananas" β†’ "banana"
   - "How many apples?" β†’ "apple"

Return ONLY the object name, nothing else."""
                }, {
                    "role": "user", 
                    "content": query_text
                }],
                temperature=0.0,  # Make it deterministic
                max_tokens=5      # Force brevity
            )
            
            llm_result = response.choices[0].message.content.strip().lower()
            # Extra safety: take only first 2 words
            words = llm_result.split()[:2]
            final_result = " ".join(words)
            
            print(f"πŸ€– OpenAI suggested prompt: '{final_result}'")
            return final_result
            
        except Exception as e:
            print(f"OpenAI error: {e}, falling back to keyword extraction")
    
    # Fallback to simple keyword extraction (no hardcoded fruits)
    print("πŸ”€ Using keyword extraction (no OpenAI)")
    query_lower = query_text.lower().replace("?", "").strip()
    
    # Look for common patterns and extract object names
    if "how many" in query_lower:
        parts = query_lower.split("how many")
        if len(parts) > 1:
            remaining = parts[1].strip()
            remaining = remaining.replace("are", "").replace("in", "").replace("the", "").replace("image", "").replace("there", "").strip()
            # Take first meaningful word(s)
            words = remaining.split()[:2]
            search_terms = " ".join(words) if words else "object"
        else:
            search_terms = "object"
    elif "count" in query_lower:
        parts = query_lower.split("count")
        if len(parts) > 1:
            remaining = parts[1].strip()
            remaining = remaining.replace("the", "").replace("in", "").replace("image", "").strip()
            words = remaining.split()[:2]
            search_terms = " ".join(words) if words else "object"
        else:
            search_terms = "object"
    elif "find" in query_lower:
        parts = query_lower.split("find")
        if len(parts) > 1:
            remaining = parts[1].strip()
            remaining = remaining.replace("all", "").replace("the", "").replace("in", "").replace("image", "").strip()
            words = remaining.split()[:2]
            search_terms = " ".join(words) if words else "object"
        else:
            search_terms = "object"
    else:
        # Extract first 1-2 meaningful words from the query
        words = query_lower.split()
        meaningful_words = [w for w in words if w not in ["how", "many", "are", "in", "the", "image", "find", "count", "detect", "there", "this", "that", "a", "an"]]
        search_terms = " ".join(meaningful_words[:2]) if meaningful_words else "object"
    
    return search_terms

def is_count_query(text):
    """Check if the query is asking for counting."""
    count_keywords = ["how many", "count", "number of", "total"]
    return any(keyword in text.lower() for keyword in count_keywords)

def detection_pipeline(query_text, image, threshold, use_sam):
    """Main detection pipeline."""
    if image is None:
        return None, "⚠️ Please upload an image first!"
    
    try:
        # Use OpenAI or fallback to get optimized search terms
        search_terms = get_optimized_prompt(query_text)
        
        print(f"Processing query: '{query_text}' -> searching for: '{search_terms}'")
        
        # Run object detection
        detections, processed_image = detect_objects_owlv2(search_terms, image, threshold)
        
        print(f"Found {len(detections)} initial detections")
        for i, det in enumerate(detections):
            print(f"Detection {i+1}: {det['label']} (score: {det['score']:.3f}, area: {calculate_bbox_area(det['bbox']):.6f})")
        
        # Filter outliers before SAM2
        if len(detections) > 2:  # Only filter if we have enough detections
            detections = filter_bbox_outliers(detections, method='zscore', threshold=2.0)
            print(f"After outlier filtering: {len(detections)} detections remain")
        
        # Generate masks if requested
        if use_sam and detections:
            print("Generating SAM2 masks...")
            detections = generate_masks_sam2(detections, processed_image)
        
        # Create visualization using your proven functions (labels OFF)
        print("Creating visualization...")
        if use_sam and detections and 'mask' in detections[0]:
            result_image = visualize_detections_with_masks(
                processed_image, 
                detections, 
                show_labels=False,  # Labels OFF
                show_boxes=True
            )
            print("Created visualization with masks")
        else:
            result_image = visualize_detections(
                processed_image, 
                detections, 
                show_labels=False  # Labels OFF
            )
            print("Created visualization with bounding boxes only")
        
        # Make sure we have a valid result image
        if result_image is None:
            print("Warning: result_image is None, returning original image")
            result_image = processed_image
        
        # Generate summary
        count = len(detections)
        
        summary_parts = []
        summary_parts.append(f"πŸ—£οΈ **Original Query**: '{query_text}'")
        summary_parts.append(f"πŸ€– **AI-Optimized Search**: '{search_terms}'")
        summary_parts.append(f"βš™οΈ **Threshold**: {threshold}")
        summary_parts.append(f"🎭 **SAM2 Segmentation**: {'Enabled' if use_sam else 'Disabled'}")
        
        if count > 0:
            if is_count_query(query_text):
                summary_parts.append(f"πŸ”’ **Answer: {count} {search_terms}(s) found**")
            else:
                summary_parts.append(f"βœ… **Found {count} {search_terms}(s)**")
            
            # Show detection details
            for i, det in enumerate(detections[:5]):  # Show first 5
                summary_parts.append(f"   β€’ Detection {i+1}: {det['score']:.3f} confidence")
            if count > 5:
                summary_parts.append(f"   β€’ ... and {count-5} more detections")
        else:
            summary_parts.append(f"❌ **No {search_terms}(s) detected**")
            summary_parts.append("πŸ’‘ Try lowering the threshold or using different terms")
        
        summary_text = "\n".join(summary_parts)
        
        return result_image, summary_text
        
    except Exception as e:
        error_msg = f"❌ **Error**: {str(e)}"
        return image, error_msg

# ----------------
# GRADIO INTERFACE
# ----------------
with gr.Blocks(title="πŸ” Object Detection & Segmentation") as demo:
    gr.Markdown("""
    # πŸ” Object Detection & Segmentation App
    
    **Simple and powerful object detection using OWL-ViT + SAM2**
    
    1. **Enter your query** (e.g., "How many people?", "Find cars", "Count apples")
    2. **Upload an image**
    3. **Adjust detection sensitivity**
    4. **Toggle SAM2 segmentation** for precise masks
    5. **Click Detect!**
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            query_input = gr.Textbox(
                label="πŸ—£οΈ What do you want to detect?",
                placeholder="e.g., 'How many people are in the image?'",
                value="How many people are in the image?",
                lines=2
            )
            
            image_input = gr.Image(
                label="πŸ“Έ Upload your image",
                type="numpy"
            )
            
            with gr.Row():
                threshold_slider = gr.Slider(
                    minimum=0.01,
                    maximum=0.9,
                    value=0.1,
                    step=0.01,
                    label="🎚️ Detection Sensitivity"
                )
                
                sam_checkbox = gr.Checkbox(
                    label="🎭 Enable SAM2 Segmentation",
                    value=False,
                    info="Generate precise pixel masks"
                )
            
            detect_button = gr.Button("πŸ” Detect Objects!", variant="primary", size="lg")
    
        with gr.Column(scale=1):
            output_image = gr.Image(label="🎯 Detection Results")
            output_text = gr.Textbox(
                label="πŸ“Š Detection Summary", 
                lines=12,
                show_copy_button=True
            )
    
    # Event handlers
    detect_button.click(
        fn=detection_pipeline,
        inputs=[query_input, image_input, threshold_slider, sam_checkbox],
        outputs=[output_image, output_text]
    )
    
    # Also trigger on Enter in text box
    query_input.submit(
        fn=detection_pipeline,
        inputs=[query_input, image_input, threshold_slider, sam_checkbox],
        outputs=[output_image, output_text]
    )
    
    # Examples section
    gr.Examples(
        examples=[
            ["How many people are in the image?", None, 0.1, False],
            ["Find all cars", None, 0.15, True],
            ["Count the bottles", None, 0.1, True],
            ["Detect dogs", None, 0.2, False],
            ["How many phones?", None, 0.15, True],
        ],
        inputs=[query_input, image_input, threshold_slider, sam_checkbox],
    )

# Launch
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)