Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -115,26 +115,33 @@ def load_model():
|
|
115 |
|
116 |
# Then, modify your extract_info function to load the model on first use
|
117 |
@spaces.GPU
|
|
|
118 |
def extract_info(template, text):
|
119 |
global tokenizer, model
|
120 |
|
121 |
if tokenizer is None:
|
122 |
-
return "β Tokenizer nicht geladen", "Bitte zuerst
|
123 |
|
124 |
try:
|
125 |
# Load model if not loaded yet
|
126 |
if model is None:
|
|
|
127 |
try:
|
128 |
model = AutoModelForCausalLM.from_pretrained(
|
129 |
MODEL_NAME,
|
130 |
torch_dtype=TORCH_DTYPE,
|
131 |
trust_remote_code=True,
|
132 |
-
revision="main"
|
133 |
-
|
134 |
-
|
|
|
135 |
except Exception as e:
|
|
|
|
|
136 |
return f"β Fehler beim Laden des Modells: {str(e)}", "{}"
|
137 |
|
|
|
|
|
138 |
# Format the template as proper JSON with indentation
|
139 |
template_formatted = json.dumps(json.loads(template), indent=4)
|
140 |
|
@@ -148,7 +155,7 @@ def extract_info(template, text):
|
|
148 |
truncation=True,
|
149 |
padding=True,
|
150 |
max_length=MAX_INPUT_LENGTH
|
151 |
-
).to(
|
152 |
|
153 |
# Generate output with torch.no_grad() for efficiency
|
154 |
with torch.no_grad():
|
@@ -180,59 +187,6 @@ def extract_info(template, text):
|
|
180 |
trace = traceback.format_exc()
|
181 |
print(f"Error in extract_info: {e}\n{trace}")
|
182 |
return f"β Fehler: {str(e)}", "{}"
|
183 |
-
@spaces.GPU
|
184 |
-
def extract_info(template, text):
|
185 |
-
global tokenizer, model
|
186 |
-
if model is None:
|
187 |
-
return "β Modell nicht geladen", "Bitte zuerst das Modell laden"
|
188 |
-
|
189 |
-
try:
|
190 |
-
# Format the template as proper JSON with indentation as per usage example
|
191 |
-
template_formatted = json.dumps(json.loads(template), indent=4)
|
192 |
-
|
193 |
-
# Create prompt exactly as shown in the usage example
|
194 |
-
prompt = f"<|input|>\n### Template:\n{template_formatted}\n### Text:\n{text}\n\n<|output|>"
|
195 |
-
|
196 |
-
# Tokenize with proper settings
|
197 |
-
inputs = tokenizer(
|
198 |
-
[prompt],
|
199 |
-
return_tensors="pt",
|
200 |
-
truncation=True,
|
201 |
-
padding=True,
|
202 |
-
max_length=MAX_INPUT_LENGTH
|
203 |
-
).to(DEVICE)
|
204 |
-
|
205 |
-
# Generate output with torch.no_grad() for efficiency
|
206 |
-
with torch.no_grad():
|
207 |
-
outputs = model.generate(
|
208 |
-
**inputs,
|
209 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
210 |
-
temperature=0.0,
|
211 |
-
do_sample=False
|
212 |
-
)
|
213 |
-
|
214 |
-
# Decode the result
|
215 |
-
result_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
216 |
-
|
217 |
-
# Extract the output part
|
218 |
-
if "<|output|>" in result_text:
|
219 |
-
json_text = result_text.split("<|output|>")[1].strip()
|
220 |
-
else:
|
221 |
-
json_text = result_text
|
222 |
-
|
223 |
-
# Try to parse as JSON
|
224 |
-
try:
|
225 |
-
extracted = json.loads(json_text)
|
226 |
-
return "β
Erfolgreich extrahiert", json.dumps(extracted, indent=2)
|
227 |
-
except json.JSONDecodeError:
|
228 |
-
return "β JSON Parsing Fehler", json_text
|
229 |
-
|
230 |
-
except Exception as e:
|
231 |
-
import traceback
|
232 |
-
trace = traceback.format_exc()
|
233 |
-
print(f"Error in extract_info: {e}\n{trace}")
|
234 |
-
return f"β Fehler: {str(e)}", "{}"
|
235 |
-
|
236 |
def create_map(df, location_col):
|
237 |
m = folium.Map(
|
238 |
location=[20, 0],
|
|
|
115 |
|
116 |
# Then, modify your extract_info function to load the model on first use
|
117 |
@spaces.GPU
|
118 |
+
@spaces.GPU
|
119 |
def extract_info(template, text):
|
120 |
global tokenizer, model
|
121 |
|
122 |
if tokenizer is None:
|
123 |
+
return "β Tokenizer nicht geladen", "Bitte zuerst auf 'Modell laden' klicken"
|
124 |
|
125 |
try:
|
126 |
# Load model if not loaded yet
|
127 |
if model is None:
|
128 |
+
print("Model not loaded yet, loading now...")
|
129 |
try:
|
130 |
model = AutoModelForCausalLM.from_pretrained(
|
131 |
MODEL_NAME,
|
132 |
torch_dtype=TORCH_DTYPE,
|
133 |
trust_remote_code=True,
|
134 |
+
revision="main",
|
135 |
+
device_map="auto" # Let the model decide CUDA placement
|
136 |
+
).eval()
|
137 |
+
print(f"β
Model loaded successfully")
|
138 |
except Exception as e:
|
139 |
+
trace = traceback.format_exc()
|
140 |
+
print(f"Error loading model: {e}\n{trace}")
|
141 |
return f"β Fehler beim Laden des Modells: {str(e)}", "{}"
|
142 |
|
143 |
+
print("Using model for inference...")
|
144 |
+
|
145 |
# Format the template as proper JSON with indentation
|
146 |
template_formatted = json.dumps(json.loads(template), indent=4)
|
147 |
|
|
|
155 |
truncation=True,
|
156 |
padding=True,
|
157 |
max_length=MAX_INPUT_LENGTH
|
158 |
+
).to(model.device) # Use model's device
|
159 |
|
160 |
# Generate output with torch.no_grad() for efficiency
|
161 |
with torch.no_grad():
|
|
|
187 |
trace = traceback.format_exc()
|
188 |
print(f"Error in extract_info: {e}\n{trace}")
|
189 |
return f"β Fehler: {str(e)}", "{}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
def create_map(df, location_col):
|
191 |
m = folium.Map(
|
192 |
location=[20, 0],
|