Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,161 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
try:
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
13 |
-
print(f"Raw result: {result[:100]}...")
|
14 |
|
15 |
-
# Extract result
|
16 |
if "<|output|>" in result:
|
17 |
json_text = result.split("<|output|>")[1].strip()
|
18 |
else:
|
19 |
-
json_text = result
|
20 |
|
21 |
-
# Try to parse
|
22 |
-
|
|
|
23 |
|
24 |
-
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from itertools import cycle
|
7 |
+
from urllib.parse import unquote
|
8 |
+
|
9 |
+
# Load model
|
10 |
+
model_name = "numind/NuExtract-1.5"
|
11 |
+
try:
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
model_name,
|
15 |
+
device_map="auto",
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
trust_remote_code=True
|
18 |
+
)
|
19 |
+
MODEL_LOADED = True
|
20 |
+
except Exception as e:
|
21 |
+
MODEL_LOADED = False
|
22 |
+
print(f"Model loading failed: {e}")
|
23 |
+
|
24 |
+
# Extract leaf values from JSON (simplified)
|
25 |
+
def extract_leaves(json_data):
|
26 |
+
leaves = []
|
27 |
+
|
28 |
+
def _extract(data, path=None):
|
29 |
+
if path is None:
|
30 |
+
path = []
|
31 |
+
|
32 |
+
if isinstance(data, dict):
|
33 |
+
for key, value in data.items():
|
34 |
+
new_path = path + [key]
|
35 |
+
if isinstance(value, (dict, list)):
|
36 |
+
_extract(value, new_path)
|
37 |
+
elif value and isinstance(value, str) and len(value.strip()) > 0:
|
38 |
+
leaves.append((new_path, value))
|
39 |
+
elif isinstance(data, list):
|
40 |
+
for i, item in enumerate(data):
|
41 |
+
new_path = path + [i]
|
42 |
+
if isinstance(item, (dict, list)):
|
43 |
+
_extract(item, new_path)
|
44 |
+
elif item and isinstance(item, str) and len(item.strip()) > 0:
|
45 |
+
leaves.append((new_path, item))
|
46 |
|
47 |
+
_extract(json_data)
|
48 |
+
return leaves
|
49 |
+
|
50 |
+
# Highlight words in text
|
51 |
+
def highlight_words(input_text, json_output):
|
52 |
+
colors = cycle(["#90ee90", "#add8e6", "#ffb6c1", "#ffff99", "#ffa07a"])
|
53 |
+
color_map = {}
|
54 |
+
highlighted_text = input_text
|
55 |
+
|
56 |
+
leaves = extract_leaves(json_output)
|
57 |
+
for path, value in leaves:
|
58 |
+
path_key = tuple(path)
|
59 |
+
if path_key not in color_map:
|
60 |
+
color_map[path_key] = next(colors)
|
61 |
+
color = color_map[path_key]
|
62 |
+
|
63 |
+
try:
|
64 |
+
escaped_value = re.escape(value).replace(r'\ ', r'\s+')
|
65 |
+
pattern = rf"(?<=[ \n\t]){escaped_value}(?=[ \n\t\.\,\?\:\;])"
|
66 |
+
replacement = f"<span style='background-color: {color};'>{unquote(value)}</span>"
|
67 |
+
highlighted_text = re.sub(pattern, replacement, highlighted_text, flags=re.IGNORECASE)
|
68 |
+
except:
|
69 |
+
# Skip highlighting if regex fails
|
70 |
+
pass
|
71 |
+
|
72 |
+
return highlighted_text
|
73 |
+
|
74 |
+
# Process function
|
75 |
+
def extract_structure(template, text, size="4000"):
|
76 |
+
if not MODEL_LOADED:
|
77 |
+
return "β Model not loaded", "{}", "<p style='color:red'>Model failed to initialize</p>"
|
78 |
|
79 |
try:
|
80 |
+
# Get window size
|
81 |
+
window_size = 4000
|
82 |
+
if isinstance(size, str) and size.isdigit():
|
83 |
+
window_size = min(int(size), 10000) # Cap at 10k
|
84 |
+
|
85 |
+
# Format the input (simplified version without sliding window)
|
86 |
+
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
87 |
+
|
88 |
+
# Generate prediction
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
|
90 |
+
outputs = model.generate(
|
91 |
+
**inputs,
|
92 |
+
max_new_tokens=2000, # Reduced for testing
|
93 |
+
do_sample=False
|
94 |
+
)
|
95 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
96 |
|
97 |
+
# Extract JSON result
|
98 |
if "<|output|>" in result:
|
99 |
json_text = result.split("<|output|>")[1].strip()
|
100 |
else:
|
101 |
+
json_text = result.strip()
|
102 |
|
103 |
+
# Try to parse and format JSON
|
104 |
+
json_data = json.loads(json_text)
|
105 |
+
formatted_json = json.dumps(json_data, indent=2)
|
106 |
|
107 |
+
# Create highlighted version
|
108 |
+
html_content = highlight_words(text, json_data)
|
109 |
+
|
110 |
+
return "β
Success", formatted_json, html_content
|
111 |
except Exception as e:
|
112 |
+
return f"β Error: {str(e)}", "{}", f"<p style='color:red'>{str(e)}</p>"
|
113 |
+
|
114 |
+
# Create interface
|
115 |
+
with gr.Blocks() as demo:
|
116 |
+
gr.Markdown("# NuExtract-1.5 Structured Data Extractor")
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column():
|
120 |
+
template = gr.Textbox(
|
121 |
+
label="Template (JSON)",
|
122 |
+
value='{"name": "", "email": ""}',
|
123 |
+
lines=5
|
124 |
+
)
|
125 |
+
text = gr.TextArea(
|
126 |
+
label="Input Text",
|
127 |
+
value="Contact: John Smith (john@example.com)",
|
128 |
+
lines=10
|
129 |
+
)
|
130 |
+
size = gr.Textbox(
|
131 |
+
label="Window Size",
|
132 |
+
value="4000",
|
133 |
+
visible=True
|
134 |
+
)
|
135 |
+
btn = gr.Button("Extract", variant="primary")
|
136 |
+
|
137 |
+
with gr.Column():
|
138 |
+
status = gr.Textbox(label="Status")
|
139 |
+
json_out = gr.Textbox(label="Extracted JSON", lines=10)
|
140 |
+
html_out = gr.HTML(label="Highlighted Text")
|
141 |
+
|
142 |
+
# Connect the button
|
143 |
+
btn.click(
|
144 |
+
fn=extract_structure,
|
145 |
+
inputs=[template, text, size],
|
146 |
+
outputs=[status, json_out, html_out]
|
147 |
+
)
|
148 |
+
|
149 |
+
# Add examples that match format
|
150 |
+
gr.Examples(
|
151 |
+
[
|
152 |
+
[
|
153 |
+
'{"name": "", "email": ""}',
|
154 |
+
'Contact: John Smith (john@example.com)',
|
155 |
+
"4000"
|
156 |
+
]
|
157 |
+
],
|
158 |
+
[template, text, size]
|
159 |
+
)
|
160 |
+
|
161 |
+
demo.launch()
|