Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import requests
|
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
import folium
|
7 |
-
from folium.plugins import MeasureControl, Fullscreen, MarkerCluster
|
8 |
from geopy.geocoders import Nominatim
|
9 |
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
|
10 |
import time
|
@@ -18,30 +18,9 @@ warnings.filterwarnings("ignore")
|
|
18 |
|
19 |
# Map Tile Providers with reliable sources
|
20 |
MAP_TILES = {
|
21 |
-
"Satellite": {
|
22 |
-
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}",
|
23 |
-
"attr": "Esri",
|
24 |
-
"fallback": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}"
|
25 |
-
},
|
26 |
-
"Topographic": {
|
27 |
-
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer/tile/{z}/{y}/{x}",
|
28 |
-
"attr": "Esri",
|
29 |
-
"fallback": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png"
|
30 |
-
},
|
31 |
-
"OpenStreetMap": {
|
32 |
-
"url": "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",
|
33 |
-
"attr": "OpenStreetMap",
|
34 |
-
"fallback": None
|
35 |
-
},
|
36 |
-
"Terrain": {
|
37 |
-
"url": "https://server.arcgisonline.com/ArcGIS/rest/services/World_Terrain_Base/MapServer/tile/{z}/{y}/{x}",
|
38 |
-
"attr": "Esri",
|
39 |
-
"fallback": None
|
40 |
-
},
|
41 |
"Toner": {
|
42 |
"url": "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}.png",
|
43 |
-
"attr": "Stadia Maps"
|
44 |
-
"fallback": None
|
45 |
}
|
46 |
}
|
47 |
|
@@ -49,126 +28,132 @@ MAP_TILES = {
|
|
49 |
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
|
50 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
self.geolocator = Nominatim(
|
59 |
-
user_agent=user_agent,
|
60 |
-
timeout=timeout
|
61 |
-
)
|
62 |
-
self.rate_limit = rate_limit
|
63 |
self.last_request = 0
|
64 |
-
|
65 |
-
|
66 |
-
def _rate_limit_wait(self):
|
67 |
current_time = time.time()
|
68 |
-
|
69 |
-
if
|
70 |
-
time.sleep(
|
71 |
self.last_request = time.time()
|
72 |
-
|
73 |
-
def
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
if location in self.cache:
|
76 |
return self.cache[location]
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
print(f"Failed to geocode '{location}' after {max_retries} attempts: {e}")
|
92 |
-
self.cache[location] = None
|
93 |
-
return None
|
94 |
-
time.sleep(2 ** attempt) # Exponential backoff
|
95 |
-
except Exception as e:
|
96 |
-
print(f"Error geocoding '{location}': {e}")
|
97 |
-
self.cache[location] = None
|
98 |
-
return None
|
99 |
-
return None
|
100 |
-
|
101 |
-
def process_locations(self, locations: str) -> List[Optional[Tuple[float, float]]]:
|
102 |
-
if pd.isna(locations) or not locations:
|
103 |
-
return []
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
try:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
location_list = [match.strip() for match in matches if match.strip()]
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
# For debugging
|
117 |
-
print(f"Parsed '{locations}' into: {location_list}")
|
118 |
-
|
119 |
-
return [self.geocode_location(loc) for loc in location_list]
|
120 |
-
except Exception as e:
|
121 |
-
print(f"Error parsing locations '{locations}': {e}")
|
122 |
-
# Fall back to simple method
|
123 |
-
location_list = [loc.strip() for loc in locations.split(',') if loc.strip()]
|
124 |
-
return [self.geocode_location(loc) for loc in location_list]
|
125 |
|
126 |
-
def
|
127 |
-
|
128 |
-
|
129 |
-
# Set default tile
|
130 |
-
default_tile_name = "Toner"
|
131 |
-
|
132 |
-
# Initialize map
|
133 |
m = folium.Map(location=[20, 0], zoom_start=2, control_scale=True)
|
134 |
|
135 |
-
# Add
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
show=(name == default_tile_name) # Only show the default layer initially
|
144 |
-
).add_to(m)
|
145 |
|
146 |
-
# Add plugins
|
147 |
Fullscreen().add_to(m)
|
148 |
MeasureControl(position='topright', primary_length_unit='kilometers').add_to(m)
|
149 |
|
150 |
-
#
|
151 |
geocoder = SafeGeocoder()
|
152 |
coords = []
|
153 |
-
|
154 |
-
# Create marker cluster for better performance with many points
|
155 |
marker_cluster = MarkerCluster(name="Locations").add_to(m)
|
156 |
-
|
157 |
-
# Process each location
|
158 |
processed_count = 0
|
|
|
159 |
for idx, row in df.iterrows():
|
160 |
if pd.isna(row[location_col]):
|
161 |
continue
|
162 |
|
163 |
location = str(row[location_col]).strip()
|
164 |
|
165 |
-
# Get additional info
|
166 |
additional_info = ""
|
167 |
for col in df.columns:
|
168 |
if col != location_col and not pd.isna(row[col]):
|
169 |
additional_info += f"<br><b>{col}:</b> {row[col]}"
|
170 |
|
171 |
-
# Parse
|
172 |
try:
|
173 |
locations = [loc.strip() for loc in location.split(',') if loc.strip()]
|
174 |
if not locations:
|
@@ -178,10 +163,8 @@ def create_reliable_map(df, location_col):
|
|
178 |
|
179 |
# Process each location
|
180 |
for loc in locations:
|
181 |
-
# Geocode location
|
182 |
point = geocoder.get_coords(loc)
|
183 |
if point:
|
184 |
-
# Create popup content
|
185 |
popup_content = f"""
|
186 |
<div style="min-width: 200px; max-width: 300px">
|
187 |
<h4 style="font-family: 'Source Sans Pro', sans-serif; margin-bottom: 5px;">{loc}</h4>
|
@@ -191,7 +174,6 @@ def create_reliable_map(df, location_col):
|
|
191 |
</div>
|
192 |
"""
|
193 |
|
194 |
-
# Add marker
|
195 |
folium.Marker(
|
196 |
location=point,
|
197 |
popup=folium.Popup(popup_content, max_width=300),
|
@@ -202,61 +184,11 @@ def create_reliable_map(df, location_col):
|
|
202 |
coords.append(point)
|
203 |
processed_count += 1
|
204 |
|
205 |
-
#
|
206 |
-
# folium.LayerControl(collapsed=False).add_to(m)
|
207 |
-
|
208 |
-
# Set bounds if we have coordinates
|
209 |
if coords:
|
210 |
m.fit_bounds(coords)
|
211 |
|
212 |
-
# Add
|
213 |
-
m.get_root().html.add_child(folium.Element("""
|
214 |
-
<script>
|
215 |
-
// Wait for the map to be fully loaded
|
216 |
-
document.addEventListener('DOMContentLoaded', function() {
|
217 |
-
setTimeout(function() {
|
218 |
-
// Get the map instance
|
219 |
-
var maps = document.querySelectorAll('.leaflet-container');
|
220 |
-
if (maps.length > 0) {
|
221 |
-
var map = maps[0];
|
222 |
-
|
223 |
-
// Add error handler for tiles
|
224 |
-
var layers = map.querySelectorAll('.leaflet-tile-pane .leaflet-layer');
|
225 |
-
for (var i = 0; i < layers.length; i++) {
|
226 |
-
var layer = layers[i];
|
227 |
-
var tiles = layer.querySelectorAll('.leaflet-tile');
|
228 |
-
|
229 |
-
// Check if layer has no loaded tiles
|
230 |
-
var loadedTiles = layer.querySelectorAll('.leaflet-tile-loaded');
|
231 |
-
if (tiles.length > 0 && loadedTiles.length === 0) {
|
232 |
-
// Force switch to OpenStreetMap if current layer failed
|
233 |
-
var osmButton = document.querySelector('.leaflet-control-layers-list input[type="radio"]:nth-child(3)');
|
234 |
-
if (osmButton) {
|
235 |
-
osmButton.click();
|
236 |
-
}
|
237 |
-
console.log("Switched to fallback tile layer due to loading issues");
|
238 |
-
}
|
239 |
-
}
|
240 |
-
}
|
241 |
-
}, 3000); // Wait 3 seconds for tiles to load
|
242 |
-
});
|
243 |
-
</script>
|
244 |
-
|
245 |
-
<style>
|
246 |
-
.leaflet-popup-content {
|
247 |
-
font-family: 'Source Sans Pro', sans-serif;
|
248 |
-
}
|
249 |
-
.leaflet-popup-content h4 {
|
250 |
-
font-weight: 600;
|
251 |
-
margin-bottom: 8px;
|
252 |
-
}
|
253 |
-
.leaflet-control-layers {
|
254 |
-
font-family: 'Source Sans Pro', sans-serif;
|
255 |
-
}
|
256 |
-
</style>
|
257 |
-
"""))
|
258 |
-
|
259 |
-
# Add custom CSS for better fonts
|
260 |
custom_css = """
|
261 |
<style>
|
262 |
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap');
|
@@ -269,79 +201,33 @@ def create_reliable_map(df, location_col):
|
|
269 |
|
270 |
return m._repr_html_(), processed_count
|
271 |
|
272 |
-
# SafeGeocoder with better error handling
|
273 |
-
class SafeGeocoder:
|
274 |
-
def __init__(self):
|
275 |
-
user_agent = f"location_mapper_v1_{random.randint(1000, 9999)}"
|
276 |
-
self.geolocator = Nominatim(user_agent=user_agent, timeout=10)
|
277 |
-
self.cache = {} # Simple cache to avoid repeated requests
|
278 |
-
self.last_request = 0
|
279 |
-
|
280 |
-
def _respect_rate_limit(self):
|
281 |
-
# Ensure at least 1 second between requests
|
282 |
-
current_time = time.time()
|
283 |
-
elapsed = current_time - self.last_request
|
284 |
-
if elapsed < 1.0:
|
285 |
-
time.sleep(1.0 - elapsed)
|
286 |
-
self.last_request = time.time()
|
287 |
-
|
288 |
-
def get_coords(self, location: str):
|
289 |
-
if not location or pd.isna(location):
|
290 |
-
return None
|
291 |
-
|
292 |
-
# Convert to string if needed
|
293 |
-
location = str(location).strip()
|
294 |
-
|
295 |
-
# Check cache first
|
296 |
-
if location in self.cache:
|
297 |
-
return self.cache[location]
|
298 |
-
|
299 |
-
try:
|
300 |
-
self._respect_rate_limit()
|
301 |
-
result = self.geolocator.geocode(location)
|
302 |
-
if result:
|
303 |
-
coords = (result.latitude, result.longitude)
|
304 |
-
self.cache[location] = coords
|
305 |
-
return coords
|
306 |
-
self.cache[location] = None
|
307 |
-
return None
|
308 |
-
except Exception as e:
|
309 |
-
print(f"Geocoding error for '{location}': {e}")
|
310 |
-
self.cache[location] = None
|
311 |
-
return None
|
312 |
-
|
313 |
def process_excel(file, places_column):
|
314 |
-
# Check if file is None
|
315 |
if file is None:
|
316 |
return None, "No file uploaded", None
|
317 |
|
318 |
try:
|
319 |
-
# Handle
|
320 |
if hasattr(file, 'name'):
|
321 |
-
# Gradio file object
|
322 |
df = pd.read_excel(file.name)
|
323 |
elif isinstance(file, bytes):
|
324 |
-
# Raw bytes
|
325 |
df = pd.read_excel(io.BytesIO(file))
|
326 |
else:
|
327 |
-
# Assume it's a filepath string
|
328 |
df = pd.read_excel(file)
|
329 |
|
330 |
-
# Print column names for debugging
|
331 |
print(f"Columns in Excel file: {list(df.columns)}")
|
332 |
|
333 |
if places_column not in df.columns:
|
334 |
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None
|
335 |
|
336 |
# Create map
|
337 |
-
map_html, processed_count =
|
338 |
|
339 |
# Save processed data
|
340 |
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
|
341 |
processed_path = tmp.name
|
342 |
df.to_excel(processed_path, index=False)
|
343 |
|
344 |
-
#
|
345 |
total_locations = df[places_column].count()
|
346 |
success_rate = (processed_count / total_locations * 100) if total_locations > 0 else 0
|
347 |
|
@@ -354,184 +240,165 @@ def process_excel(file, places_column):
|
|
354 |
print(f"Error processing file: {e}\n{trace}")
|
355 |
return None, f"Error processing file: {str(e)}", None
|
356 |
|
357 |
-
|
358 |
-
if file is None:
|
359 |
-
return None, "Please upload an Excel file", None
|
360 |
-
|
361 |
-
try:
|
362 |
-
map_html, stats, processed_path = process_excel(file, column)
|
363 |
-
|
364 |
-
if map_html and processed_path:
|
365 |
-
# Create responsive container for the map
|
366 |
-
responsive_html = f"""
|
367 |
-
<div style="width:100%; height:70vh; margin:0; padding:0; border:1px solid #e0e0e0; border-radius:8px; overflow:hidden;">
|
368 |
-
{map_html}
|
369 |
-
</div>
|
370 |
-
"""
|
371 |
-
return responsive_html, stats, processed_path
|
372 |
-
else:
|
373 |
-
return None, stats, None
|
374 |
-
except Exception as e:
|
375 |
-
import traceback
|
376 |
-
trace = traceback.format_exc()
|
377 |
-
print(f"Error in process_and_map: {e}\n{trace}")
|
378 |
-
return None, f"Error: {str(e)}", None
|
379 |
|
380 |
-
#
|
381 |
-
def extract_info(template, text):
|
382 |
-
try:
|
383 |
-
# Format prompt according to NuExtract-1.5 requirements
|
384 |
-
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
385 |
-
|
386 |
-
# Call API
|
387 |
-
payload = {
|
388 |
-
"inputs": prompt,
|
389 |
-
"parameters": {
|
390 |
-
"max_new_tokens": 1000,
|
391 |
-
"do_sample": False
|
392 |
-
}
|
393 |
-
}
|
394 |
-
|
395 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
396 |
-
|
397 |
-
# If the model is loading, inform the user
|
398 |
-
if response.status_code == 503:
|
399 |
-
response_json = response.json()
|
400 |
-
if "error" in response_json and "loading" in response_json["error"]:
|
401 |
-
estimated_time = response_json.get("estimated_time", "unknown")
|
402 |
-
return f"β³ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes"
|
403 |
-
|
404 |
-
if response.status_code != 200:
|
405 |
-
return f"β API Error: {response.status_code}", response.text
|
406 |
-
|
407 |
-
# Process result
|
408 |
-
result = response.json()
|
409 |
-
|
410 |
-
# Handle different response formats
|
411 |
-
try:
|
412 |
-
if isinstance(result, list):
|
413 |
-
if len(result) > 0:
|
414 |
-
result_text = result[0].get("generated_text", "")
|
415 |
-
else:
|
416 |
-
return "β Empty result list", "{}"
|
417 |
-
else:
|
418 |
-
result_text = str(result)
|
419 |
-
|
420 |
-
# Split at output marker if present
|
421 |
-
if "<|output|>" in result_text:
|
422 |
-
parts = result_text.split("<|output|>")
|
423 |
-
if len(parts) > 1:
|
424 |
-
json_text = parts[1].strip()
|
425 |
-
else:
|
426 |
-
json_text = result_text
|
427 |
-
else:
|
428 |
-
json_text = result_text
|
429 |
-
|
430 |
-
# Try to parse as JSON
|
431 |
-
try:
|
432 |
-
extracted = json.loads(json_text)
|
433 |
-
formatted = json.dumps(extracted, indent=2)
|
434 |
-
except json.JSONDecodeError:
|
435 |
-
return "β JSON parsing error", json_text
|
436 |
-
|
437 |
-
return "β
Success", formatted
|
438 |
-
except Exception as inner_e:
|
439 |
-
return f"β Error processing result: {str(inner_e)}", "{}"
|
440 |
-
except Exception as e:
|
441 |
-
return f"β Error: {str(e)}", "{}"
|
442 |
-
|
443 |
-
# Custom CSS for improved styling
|
444 |
custom_css = """
|
445 |
<style>
|
446 |
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;600;700&display=swap');
|
447 |
|
448 |
-
:root {
|
449 |
-
--primary-color: #2c6bb3;
|
450 |
-
--secondary-color: #4e8fd1;
|
451 |
-
--background-color: #f7f9fc;
|
452 |
-
--text-color: #333333;
|
453 |
-
--border-color: #e0e0e0;
|
454 |
-
}
|
455 |
-
|
456 |
body, .gradio-container {
|
457 |
font-family: 'Source Sans Pro', sans-serif !important;
|
458 |
-
|
459 |
-
color: var(--text-color);
|
460 |
}
|
461 |
|
462 |
h1 {
|
463 |
font-weight: 700 !important;
|
464 |
-
color:
|
465 |
font-size: 2.5rem !important;
|
466 |
margin-bottom: 1rem !important;
|
467 |
}
|
468 |
|
469 |
h2 {
|
470 |
font-weight: 600 !important;
|
471 |
-
color:
|
472 |
font-size: 1.5rem !important;
|
473 |
margin-top: 1rem !important;
|
474 |
margin-bottom: 0.75rem !important;
|
475 |
}
|
476 |
|
477 |
.gradio-button.primary {
|
478 |
-
background-color:
|
479 |
-
}
|
480 |
-
|
481 |
-
.gradio-button.primary:hover {
|
482 |
-
background-color: var(--secondary-color) !important;
|
483 |
-
}
|
484 |
-
|
485 |
-
.gradio-tab-nav button {
|
486 |
-
font-family: 'Source Sans Pro', sans-serif !important;
|
487 |
-
font-weight: 600 !important;
|
488 |
-
}
|
489 |
-
|
490 |
-
.gradio-tab-nav button.selected {
|
491 |
-
color: var(--primary-color) !important;
|
492 |
-
border-color: var(--primary-color) !important;
|
493 |
}
|
494 |
|
495 |
.info-box {
|
496 |
background-color: #e8f4fd;
|
497 |
-
border-left: 4px solid
|
498 |
padding: 15px;
|
499 |
margin: 15px 0;
|
500 |
border-radius: 4px;
|
501 |
}
|
502 |
|
503 |
-
.stats-box {
|
504 |
-
background-color: white;
|
505 |
-
border: 1px solid var(--border-color);
|
506 |
-
border-radius: 8px;
|
507 |
-
padding: 15px;
|
508 |
-
font-size: 1rem;
|
509 |
-
line-height: 1.5;
|
510 |
-
}
|
511 |
-
|
512 |
-
.subtle-text {
|
513 |
-
font-size: 0.9rem;
|
514 |
-
color: #666;
|
515 |
-
font-style: italic;
|
516 |
-
}
|
517 |
-
|
518 |
.file-upload-box {
|
519 |
-
border: 2px dashed
|
520 |
border-radius: 8px;
|
521 |
padding: 20px;
|
522 |
text-align: center;
|
523 |
transition: all 0.3s ease;
|
524 |
}
|
525 |
-
|
526 |
-
.file-upload-box:hover {
|
527 |
-
border-color: var(--primary-color);
|
528 |
-
}
|
529 |
-
|
530 |
</style>
|
531 |
"""
|
532 |
|
533 |
-
#
|
534 |
-
with gr.Blocks(css=custom_css) as
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
gr.HTML("""
|
536 |
<div style="text-align: center; margin-bottom: 1rem">
|
537 |
<h1>Historical Data Analysis Tools</h1>
|
@@ -539,87 +406,14 @@ with gr.Blocks(css=custom_css) as demo:
|
|
539 |
</div>
|
540 |
""")
|
541 |
|
542 |
-
with gr.Tabs():
|
543 |
with gr.TabItem("π Text Extraction"):
|
544 |
-
|
545 |
-
|
546 |
-
<h3 style="margin-top: 0;">Extract Structured Data from Text</h3>
|
547 |
-
<p>Use NuExtract-1.5 to automatically extract structured information from historical texts. Define the JSON template for the data you want to extract.</p>
|
548 |
-
</div>
|
549 |
-
""")
|
550 |
-
|
551 |
-
with gr.Row():
|
552 |
-
with gr.Column():
|
553 |
-
template = gr.Textbox(
|
554 |
-
label="JSON Template",
|
555 |
-
value='{"earthquake location": "", "dateline location": ""}',
|
556 |
-
lines=5,
|
557 |
-
placeholder="Define the fields you want to extract as a JSON template"
|
558 |
-
)
|
559 |
-
text = gr.Textbox(
|
560 |
-
label="Text to Extract From",
|
561 |
-
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daΓ in Yokohama bei einem Erdbeben sechs Personen getΓΆtet und 22 verwundet, in Tokio vier getΓΆtet und 22 verwundet wurden. In Yokohama seien 6VV HΓ€user zerstΓΆrt worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind BrΓ€nde ausgebrochen. Ein Eisenbahnzug stΓΌrzte in den VajugawafluΓ zwischen Gotemba und Tokio. Sechs ZΓΌge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 grΓΆΓere Erdbeben zu verzeichnen gewesen.",
|
562 |
-
lines=8,
|
563 |
-
placeholder="Enter the text you want to extract information from"
|
564 |
-
)
|
565 |
-
extract_btn = gr.Button("Extract Information", variant="primary", size="lg")
|
566 |
-
|
567 |
-
with gr.Column():
|
568 |
-
status = gr.Textbox(
|
569 |
-
label="Status",
|
570 |
-
elem_classes="stats-box"
|
571 |
-
)
|
572 |
-
output = gr.Textbox(
|
573 |
-
label="Extracted Data",
|
574 |
-
elem_classes="stats-box",
|
575 |
-
lines=10
|
576 |
-
)
|
577 |
|
578 |
-
extract_btn.click(
|
579 |
-
fn=extract_info,
|
580 |
-
inputs=[template, text],
|
581 |
-
outputs=[status, output]
|
582 |
-
)
|
583 |
-
|
584 |
with gr.TabItem("π Location Mapping"):
|
585 |
-
|
586 |
-
|
587 |
-
<h3 style="margin-top: 0;">Map Your Historical Locations</h3>
|
588 |
-
<p>Upload an Excel file containing location data to create an interactive map visualization. The tool will geocode your locations and display them on a customizable map.</p>
|
589 |
-
</div>
|
590 |
-
""")
|
591 |
-
|
592 |
-
with gr.Row():
|
593 |
-
with gr.Column():
|
594 |
-
template = gr.Textbox(
|
595 |
-
label="JSON Template",
|
596 |
-
value='{"earthquake location": "", "dateline location": ""}',
|
597 |
-
lines=5,
|
598 |
-
placeholder="Define the fields you want to extract as a JSON template"
|
599 |
-
)
|
600 |
-
text = gr.Textbox(
|
601 |
-
label="Text to Extract From",
|
602 |
-
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daΓ in Yokohama bei einem Erdbeben sechs Personen getΓΆtet und 22 verwundet, in Tokio vier getΓΆtet und 22 verwundet wurden. In Yokohama seien 6VV HΓ€user zerstΓΆrt worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind BrΓ€nde ausgebrochen. Ein Eisenbahnzug stΓΌrzte in den VajugawafluΓ zwischen Gotemba und Tokio. Sechs ZΓΌge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 grΓΆΓere Erdbeben zu verzeichnen gewesen.",
|
603 |
-
lines=8,
|
604 |
-
placeholder="Enter the text you want to extract information from"
|
605 |
-
)
|
606 |
-
extract_btn = gr.Button("Extract Information", variant="primary", size="lg")
|
607 |
-
|
608 |
-
with gr.Column():
|
609 |
-
status = gr.Textbox(
|
610 |
-
label="Status",
|
611 |
-
elem_classes="stats-box"
|
612 |
-
)
|
613 |
-
output = gr.JSON(
|
614 |
-
label="Extracted Data",
|
615 |
-
elem_classes="stats-box"
|
616 |
-
)
|
617 |
-
|
618 |
-
extract_btn.click(
|
619 |
-
fn=extract_info,
|
620 |
-
inputs=[template, text],
|
621 |
-
outputs=[status, output]
|
622 |
-
)
|
623 |
|
624 |
gr.HTML("""
|
625 |
<div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #eee; font-size: 0.9rem; color: #666;">
|
@@ -628,4 +422,4 @@ with gr.Blocks(css=custom_css) as demo:
|
|
628 |
""")
|
629 |
|
630 |
if __name__ == "__main__":
|
631 |
-
demo.launch()
|
|
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
import folium
|
7 |
+
from folium.plugins import MeasureControl, Fullscreen, MarkerCluster
|
8 |
from geopy.geocoders import Nominatim
|
9 |
from geopy.exc import GeocoderTimedOut, GeocoderServiceError
|
10 |
import time
|
|
|
18 |
|
19 |
# Map Tile Providers with reliable sources
|
20 |
MAP_TILES = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
"Toner": {
|
22 |
"url": "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}.png",
|
23 |
+
"attr": "Stadia Maps"
|
|
|
24 |
}
|
25 |
}
|
26 |
|
|
|
28 |
API_URL = "https://api-inference.huggingface.co/models/numind/NuExtract-1.5"
|
29 |
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}"}
|
30 |
|
31 |
+
class SafeGeocoder:
|
32 |
+
def __init__(self):
|
33 |
+
user_agent = f"location_mapper_v1_{random.randint(1000, 9999)}"
|
34 |
+
self.geolocator = Nominatim(user_agent=user_agent, timeout=10)
|
35 |
+
self.cache = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
self.last_request = 0
|
37 |
+
|
38 |
+
def _respect_rate_limit(self):
|
|
|
39 |
current_time = time.time()
|
40 |
+
elapsed = current_time - self.last_request
|
41 |
+
if elapsed < 1.0:
|
42 |
+
time.sleep(1.0 - elapsed)
|
43 |
self.last_request = time.time()
|
44 |
+
|
45 |
+
def get_coords(self, location: str):
|
46 |
+
if not location or pd.isna(location):
|
47 |
+
return None
|
48 |
+
|
49 |
+
location = str(location).strip()
|
50 |
+
|
51 |
if location in self.cache:
|
52 |
return self.cache[location]
|
53 |
+
|
54 |
+
try:
|
55 |
+
self._respect_rate_limit()
|
56 |
+
result = self.geolocator.geocode(location)
|
57 |
+
if result:
|
58 |
+
coords = (result.latitude, result.longitude)
|
59 |
+
self.cache[location] = coords
|
60 |
+
return coords
|
61 |
+
self.cache[location] = None
|
62 |
+
return None
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Geocoding error for '{location}': {e}")
|
65 |
+
self.cache[location] = None
|
66 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# NuExtract Functions
|
69 |
+
def extract_info(template, text):
|
70 |
+
try:
|
71 |
+
# Format prompt according to NuExtract-1.5 requirements
|
72 |
+
prompt = f"<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>"
|
73 |
+
|
74 |
+
# Call API
|
75 |
+
payload = {
|
76 |
+
"inputs": prompt,
|
77 |
+
"parameters": {
|
78 |
+
"max_new_tokens": 1000,
|
79 |
+
"do_sample": False
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
84 |
+
|
85 |
+
# If the model is loading, inform the user
|
86 |
+
if response.status_code == 503:
|
87 |
+
response_json = response.json()
|
88 |
+
if "error" in response_json and "loading" in response_json["error"]:
|
89 |
+
estimated_time = response_json.get("estimated_time", "unknown")
|
90 |
+
return f"β³ Model is loading (ETA: {int(float(estimated_time)) if isinstance(estimated_time, (int, float, str)) else 'unknown'} seconds)", "Please try again in a few minutes"
|
91 |
+
|
92 |
+
if response.status_code != 200:
|
93 |
+
return f"β API Error: {response.status_code}", response.text
|
94 |
+
|
95 |
+
# Process result
|
96 |
+
result = response.json()
|
97 |
+
|
98 |
+
# Handle different response formats
|
99 |
+
if isinstance(result, list) and len(result) > 0:
|
100 |
+
result_text = result[0].get("generated_text", "")
|
101 |
+
else:
|
102 |
+
result_text = str(result)
|
103 |
+
|
104 |
+
# Split at output marker if present
|
105 |
+
if "<|output|>" in result_text:
|
106 |
+
json_text = result_text.split("<|output|>")[1].strip()
|
107 |
+
else:
|
108 |
+
json_text = result_text
|
109 |
+
|
110 |
+
# Try to parse as JSON
|
111 |
try:
|
112 |
+
extracted = json.loads(json_text)
|
113 |
+
formatted = json.dumps(extracted, indent=2)
|
114 |
+
except json.JSONDecodeError:
|
115 |
+
return "β JSON parsing error", json_text
|
|
|
116 |
|
117 |
+
return "β
Success", formatted
|
118 |
+
except Exception as e:
|
119 |
+
return f"β Error: {str(e)}", "{}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
def create_map(df, location_col):
|
122 |
+
# Initialize map with Toner style
|
|
|
|
|
|
|
|
|
|
|
123 |
m = folium.Map(location=[20, 0], zoom_start=2, control_scale=True)
|
124 |
|
125 |
+
# Add the single tile layer without controls
|
126 |
+
folium.TileLayer(
|
127 |
+
tiles=MAP_TILES["Toner"]["url"],
|
128 |
+
attr=MAP_TILES["Toner"]["attr"],
|
129 |
+
name="Toner",
|
130 |
+
overlay=False,
|
131 |
+
control=False
|
132 |
+
).add_to(m)
|
|
|
|
|
133 |
|
134 |
+
# Add plugins
|
135 |
Fullscreen().add_to(m)
|
136 |
MeasureControl(position='topright', primary_length_unit='kilometers').add_to(m)
|
137 |
|
138 |
+
# Process markers
|
139 |
geocoder = SafeGeocoder()
|
140 |
coords = []
|
|
|
|
|
141 |
marker_cluster = MarkerCluster(name="Locations").add_to(m)
|
|
|
|
|
142 |
processed_count = 0
|
143 |
+
|
144 |
for idx, row in df.iterrows():
|
145 |
if pd.isna(row[location_col]):
|
146 |
continue
|
147 |
|
148 |
location = str(row[location_col]).strip()
|
149 |
|
150 |
+
# Get additional info
|
151 |
additional_info = ""
|
152 |
for col in df.columns:
|
153 |
if col != location_col and not pd.isna(row[col]):
|
154 |
additional_info += f"<br><b>{col}:</b> {row[col]}"
|
155 |
|
156 |
+
# Parse locations
|
157 |
try:
|
158 |
locations = [loc.strip() for loc in location.split(',') if loc.strip()]
|
159 |
if not locations:
|
|
|
163 |
|
164 |
# Process each location
|
165 |
for loc in locations:
|
|
|
166 |
point = geocoder.get_coords(loc)
|
167 |
if point:
|
|
|
168 |
popup_content = f"""
|
169 |
<div style="min-width: 200px; max-width: 300px">
|
170 |
<h4 style="font-family: 'Source Sans Pro', sans-serif; margin-bottom: 5px;">{loc}</h4>
|
|
|
174 |
</div>
|
175 |
"""
|
176 |
|
|
|
177 |
folium.Marker(
|
178 |
location=point,
|
179 |
popup=folium.Popup(popup_content, max_width=300),
|
|
|
184 |
coords.append(point)
|
185 |
processed_count += 1
|
186 |
|
187 |
+
# Set bounds
|
|
|
|
|
|
|
188 |
if coords:
|
189 |
m.fit_bounds(coords)
|
190 |
|
191 |
+
# Add custom font CSS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
custom_css = """
|
193 |
<style>
|
194 |
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&display=swap');
|
|
|
201 |
|
202 |
return m._repr_html_(), processed_count
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
def process_excel(file, places_column):
|
|
|
205 |
if file is None:
|
206 |
return None, "No file uploaded", None
|
207 |
|
208 |
try:
|
209 |
+
# Handle file
|
210 |
if hasattr(file, 'name'):
|
|
|
211 |
df = pd.read_excel(file.name)
|
212 |
elif isinstance(file, bytes):
|
|
|
213 |
df = pd.read_excel(io.BytesIO(file))
|
214 |
else:
|
|
|
215 |
df = pd.read_excel(file)
|
216 |
|
|
|
217 |
print(f"Columns in Excel file: {list(df.columns)}")
|
218 |
|
219 |
if places_column not in df.columns:
|
220 |
return None, f"Column '{places_column}' not found in the Excel file. Available columns: {', '.join(df.columns)}", None
|
221 |
|
222 |
# Create map
|
223 |
+
map_html, processed_count = create_map(df, places_column)
|
224 |
|
225 |
# Save processed data
|
226 |
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
|
227 |
processed_path = tmp.name
|
228 |
df.to_excel(processed_path, index=False)
|
229 |
|
230 |
+
# Stats
|
231 |
total_locations = df[places_column].count()
|
232 |
success_rate = (processed_count / total_locations * 100) if total_locations > 0 else 0
|
233 |
|
|
|
240 |
print(f"Error processing file: {e}\n{trace}")
|
241 |
return None, f"Error processing file: {str(e)}", None
|
242 |
|
243 |
+
# Create separate interfaces for each tab to avoid conflicts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
+
# CSS for improved styling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
custom_css = """
|
247 |
<style>
|
248 |
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@300;400;600;700&display=swap');
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
body, .gradio-container {
|
251 |
font-family: 'Source Sans Pro', sans-serif !important;
|
252 |
+
color: #333333;
|
|
|
253 |
}
|
254 |
|
255 |
h1 {
|
256 |
font-weight: 700 !important;
|
257 |
+
color: #2c6bb3 !important;
|
258 |
font-size: 2.5rem !important;
|
259 |
margin-bottom: 1rem !important;
|
260 |
}
|
261 |
|
262 |
h2 {
|
263 |
font-weight: 600 !important;
|
264 |
+
color: #4e8fd1 !important;
|
265 |
font-size: 1.5rem !important;
|
266 |
margin-top: 1rem !important;
|
267 |
margin-bottom: 0.75rem !important;
|
268 |
}
|
269 |
|
270 |
.gradio-button.primary {
|
271 |
+
background-color: #ff7518 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
}
|
273 |
|
274 |
.info-box {
|
275 |
background-color: #e8f4fd;
|
276 |
+
border-left: 4px solid #2c6bb3;
|
277 |
padding: 15px;
|
278 |
margin: 15px 0;
|
279 |
border-radius: 4px;
|
280 |
}
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
.file-upload-box {
|
283 |
+
border: 2px dashed #e0e0e0;
|
284 |
border-radius: 8px;
|
285 |
padding: 20px;
|
286 |
text-align: center;
|
287 |
transition: all 0.3s ease;
|
288 |
}
|
|
|
|
|
|
|
|
|
|
|
289 |
</style>
|
290 |
"""
|
291 |
|
292 |
+
# Text Extraction tab as a separate Blocks interface
|
293 |
+
with gr.Blocks(css=custom_css) as extraction_interface:
|
294 |
+
gr.HTML("""
|
295 |
+
<div class="info-box">
|
296 |
+
<h3 style="margin-top: 0;">Extract Structured Data from Text</h3>
|
297 |
+
<p>Use NuExtract-1.5 to automatically extract structured information from historical texts. Define the JSON template for the data you want to extract.</p>
|
298 |
+
</div>
|
299 |
+
""")
|
300 |
+
|
301 |
+
with gr.Row():
|
302 |
+
with gr.Column():
|
303 |
+
template = gr.Textbox(
|
304 |
+
label="JSON Template",
|
305 |
+
value='{"earthquake location": "", "dateline location": ""}',
|
306 |
+
lines=5
|
307 |
+
)
|
308 |
+
text = gr.Textbox(
|
309 |
+
label="Text to Extract From",
|
310 |
+
value="Neues Erdbeben in Japan. Aus Tokio wird berichtet, daΓ in Yokohama bei einem Erdbeben sechs Personen getΓΆtet und 22 verwundet, in Tokio vier getΓΆtet und 22 verwundet wurden. In Yokohama seien 6VV HΓ€user zerstΓΆrt worden. Die telephonische und telegraphische Verbindung zwischen Tokio und Osaka ist unterbrochen worden. Der Trambahnverkehr in Tokio liegt still. Auch der Eisenbahnverkehr zwischen Tokio und Yokohama ist unterbrochen. In Sngamo, einer Vorstadt von Tokio sind BrΓ€nde ausgebrochen. Ein Eisenbahnzug stΓΌrzte in den VajugawafluΓ zwischen Gotemba und Tokio. Sechs ZΓΌge wurden umgeworfen. Mit dem letzten japanischen Erdbeben sind seit eineinhalb Jahrtausenden bis heute in Japan 229 grΓΆΓere Erdbeben zu verzeichnen gewesen.",
|
311 |
+
lines=8
|
312 |
+
)
|
313 |
+
extract_btn = gr.Button("Extract Information", variant="primary")
|
314 |
+
|
315 |
+
with gr.Column():
|
316 |
+
status = gr.Textbox(label="Status")
|
317 |
+
output = gr.Textbox(label="Output", lines=10)
|
318 |
+
|
319 |
+
extract_btn.click(
|
320 |
+
fn=extract_info,
|
321 |
+
inputs=[template, text],
|
322 |
+
outputs=[status, output]
|
323 |
+
)
|
324 |
+
|
325 |
+
# Mapping tab as a separate Blocks interface
|
326 |
+
with gr.Blocks(css=custom_css) as mapping_interface:
|
327 |
+
gr.HTML("""
|
328 |
+
<div class="info-box">
|
329 |
+
<h3 style="margin-top: 0;">Map Your Historical Locations</h3>
|
330 |
+
<p>Upload an Excel file containing location data to create an interactive map visualization. The tool will geocode your locations and display them on a map.</p>
|
331 |
+
</div>
|
332 |
+
""")
|
333 |
+
|
334 |
+
with gr.Row():
|
335 |
+
with gr.Column():
|
336 |
+
excel_file = gr.File(
|
337 |
+
label="Upload Excel File",
|
338 |
+
file_types=[".xlsx", ".xls"],
|
339 |
+
elem_classes="file-upload-box"
|
340 |
+
)
|
341 |
+
places_column = gr.Textbox(
|
342 |
+
label="Location Column Name",
|
343 |
+
value="dateline_locations",
|
344 |
+
placeholder="e.g., 'dateline_locations', 'earthquake_locations', or 'place_of_distribution'"
|
345 |
+
)
|
346 |
+
process_btn = gr.Button("Generate Map", variant="primary")
|
347 |
+
|
348 |
+
with gr.Column():
|
349 |
+
map_output = gr.HTML(
|
350 |
+
label="Interactive Map",
|
351 |
+
value="""
|
352 |
+
<div style="text-align:center; height:70vh; display:flex; align-items:center; justify-content:center;
|
353 |
+
background-color:#f5f5f5; border:1px solid #e0e0e0; border-radius:8px;">
|
354 |
+
<div>
|
355 |
+
<img src="https://cdn-icons-png.flaticon.com/512/854/854878.png" width="100">
|
356 |
+
<p style="margin-top:20px; color:#666;">Your map will appear here after processing</p>
|
357 |
+
</div>
|
358 |
+
</div>
|
359 |
+
"""
|
360 |
+
)
|
361 |
+
stats_output = gr.Textbox(
|
362 |
+
label="Location Statistics",
|
363 |
+
lines=2
|
364 |
+
)
|
365 |
+
processed_file = gr.File(
|
366 |
+
label="Download Processed Data",
|
367 |
+
visible=True,
|
368 |
+
interactive=False
|
369 |
+
)
|
370 |
+
|
371 |
+
def process_and_map(file, column):
|
372 |
+
if file is None:
|
373 |
+
return None, "Please upload an Excel file", None
|
374 |
+
|
375 |
+
try:
|
376 |
+
map_html, stats, processed_path = process_excel(file, column)
|
377 |
+
|
378 |
+
if map_html and processed_path:
|
379 |
+
# Create responsive container for the map
|
380 |
+
responsive_html = f"""
|
381 |
+
<div style="width:100%; height:70vh; margin:0; padding:0; border:1px solid #e0e0e0; border-radius:8px; overflow:hidden;">
|
382 |
+
{map_html}
|
383 |
+
</div>
|
384 |
+
"""
|
385 |
+
return responsive_html, stats, processed_path
|
386 |
+
else:
|
387 |
+
return None, stats, None
|
388 |
+
except Exception as e:
|
389 |
+
import traceback
|
390 |
+
trace = traceback.format_exc()
|
391 |
+
print(f"Error in process_and_map: {e}\n{trace}")
|
392 |
+
return None, f"Error: {str(e)}", None
|
393 |
+
|
394 |
+
process_btn.click(
|
395 |
+
fn=process_and_map,
|
396 |
+
inputs=[excel_file, places_column],
|
397 |
+
outputs=[map_output, stats_output, processed_file]
|
398 |
+
)
|
399 |
+
|
400 |
+
# Main app with proper tab separation
|
401 |
+
with gr.Blocks(css=custom_css, title="Historical Data Analysis") as demo:
|
402 |
gr.HTML("""
|
403 |
<div style="text-align: center; margin-bottom: 1rem">
|
404 |
<h1>Historical Data Analysis Tools</h1>
|
|
|
406 |
</div>
|
407 |
""")
|
408 |
|
409 |
+
with gr.Tabs() as tabs:
|
410 |
with gr.TabItem("π Text Extraction"):
|
411 |
+
# Instead of duplicating content, use the interface
|
412 |
+
extraction_interface.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
with gr.TabItem("π Location Mapping"):
|
415 |
+
# Instead of duplicating content, use the interface
|
416 |
+
mapping_interface.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
418 |
gr.HTML("""
|
419 |
<div style="text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #eee; font-size: 0.9rem; color: #666;">
|
|
|
422 |
""")
|
423 |
|
424 |
if __name__ == "__main__":
|
425 |
+
demo.launch()
|