Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,231 Bytes
47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a be196c4 47c367a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import pandas as pd
import folium
from geopy.geocoders import Nominatim
from geopy.extra.rate_limiter import RateLimiter
import tempfile
from typing import Optional, Tuple
import warnings
# Suppress warnings
warnings.filterwarnings("ignore")
# Historical Tile Providers
HISTORICAL_TILES = {
"David Rumsey (1790)": {
"url": "https://map1.davidrumsey.com/tiles/rumsey/SDSC1790/{z}/{x}/{y}.png",
"attr": "David Rumsey Map Collection",
"min_year": 1700,
"max_year": 1800
},
"David Rumsey (1860)": {
"url": "https://map1.davidrumsey.com/tiles/rumsey/SDSC1860/{z}/{x}/{y}.png",
"attr": "David Rumsey Map Collection",
"min_year": 1801,
"max_year": 1900
},
"Stamen (1915)": {
"url": "https://stamen-tiles.a.ssl.fastly.net/toner-lite/{z}/{x}/{y}.png",
"attr": "Stamen Maps",
"min_year": 1901,
"max_year": 1920
},
"OpenHistoricalMap": {
"url": "https://tile.openhistoricalmap.org/{z}/{x}/{y}.png",
"attr": "OpenHistoricalMap",
"min_year": 1700,
"max_year": 2023
}
}
class Geocoder:
def __init__(self):
self.geolocator = Nominatim(user_agent="historical_mapper", timeout=10)
self.geocode = RateLimiter(self.geolocator.geocode, min_delay_seconds=1)
self.cache = {}
def get_coords(self, location: str) -> Optional[Tuple[float, float]]:
if not location or pd.isna(location):
return None
if location in self.cache:
return self.cache[location]
try:
result = self.geocode(location)
if result:
coords = (result.latitude, result.longitude)
self.cache[location] = coords
return coords
except Exception as e:
print(f"Geocoding failed for '{location}': {str(e)}")
self.cache[location] = None
return None
def get_tile_layer(year: int):
"""Select the most appropriate tile layer for the given year"""
for name, config in HISTORICAL_TILES.items():
if config["min_year"] <= year <= config["max_year"]:
return folium.TileLayer(
tiles=config["url"],
attr=config["attr"],
name=name,
overlay=False
)
return folium.TileLayer("OpenStreetMap")
def create_historical_map(df: pd.DataFrame, location_col: str, year: int = 1900) -> str:
geocoder = Geocoder()
# Create map with historical base layer
base_layer = get_tile_layer(year)
m = folium.Map(location=[40, -10], zoom_start=2, control_scale=True)
base_layer.add_to(m)
# Add all other historical layers as options
for name, config in HISTORICAL_TILES.items():
if config["url"] != base_layer.tiles:
folium.TileLayer(
tiles=config["url"],
attr=config["attr"],
name=f"{name} ({config['min_year']}-{config['max_year']})",
overlay=False
).add_to(m)
# Add markers with historical styling
coords_list = []
for loc in df[location_col].dropna().unique():
coords = geocoder.get_coords(str(loc))
if coords:
folium.Marker(
location=coords,
popup=f"<b>{loc}</b><br>Year: {year}",
icon=folium.Icon(
color="red",
icon="info-sign",
prefix="fa"
)
).add_to(m)
coords_list.append(coords)
# Add layer control and fit bounds
folium.LayerControl().add_to(m)
if coords_list:
m.fit_bounds(coords_list)
return m._repr_html_()
def process_file(file_obj, location_col, year):
try:
# Read input file
df = pd.read_excel(file_obj.name)
# Validate column exists
if location_col not in df.columns:
return None, f"Column '{location_col}' not found", None
# Create historical map
map_html = create_historical_map(df, location_col, year)
# Save processed data
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
df.to_excel(tmp.name, index=False)
processed_path = tmp.name
# Generate stats
stats = (
f"Total locations: {len(df)}\n"
f"Unique places: {df[location_col].nunique()}\n"
f"Map year: {year}"
)
return (
f"<div style='width:100%; height:70vh'>{map_html}</div>",
stats,
processed_path
)
except Exception as e:
return None, f"Error: {str(e)}", None
# Gradio Interface
with gr.Blocks(title="Historical Map Explorer", theme=gr.themes.Soft()) as app:
gr.Markdown("# Historical Location Mapper")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload Excel File",
file_types=[".xlsx", ".xls"],
type="filepath"
)
location_col = gr.Textbox(
label="Location Column Name",
value="locations",
placeholder="Enter exact column name with locations"
)
year = gr.Slider(
minimum=1700,
maximum=2023,
value=1900,
step=1,
label="Map Year"
)
map_btn = gr.Button("Generate Historical Map", variant="primary")
with gr.Column():
map_display = gr.HTML(
label="Historical Map",
value="<div style='text-align:center;padding:20px;'>"
"Map will appear here after processing</div>"
)
stats_output = gr.Textbox(label="Statistics")
download_output = gr.File(label="Download Processed Data")
map_btn.click(
process_file,
inputs=[file_input, location_col, year],
outputs=[map_display, stats_output, download_output]
)
if __name__ == "__main__":
app.launch() |