Spaces:
Sleeping
Sleeping
File size: 7,251 Bytes
8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d cbd3da5 8e5b86d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
import gradio as gr
import pickle
import matplotlib.pyplot as plt
from matplotlib import cm
import pandas as pd
import time
import json
# Load model and tokenizer
model = tf.keras.models.load_model('sentiment_rnn.h5')
# Load tokenizer
with open('tokenizer.pkl', 'rb') as f:
tokenizer = pickle.load(f)
# Initialize label encoder
label_encoder = LabelEncoder()
label_encoder.fit(["Happy", "Sad", "Neutral"])
# Load sample data for examples
sample_data = pd.read_csv("sentiment_dataset_1000.csv")
def predict_sentiment(text, show_details=False):
"""
Predict sentiment with detailed analysis
"""
start_time = time.time()
# Preprocess the text
sequence = tokenizer.texts_to_sequences([text])
padded = pad_sequences(sequence, maxlen=50)
# Make prediction
prediction = model.predict(padded, verbose=0)[0]
processing_time = time.time() - start_time
predicted_class = np.argmax(prediction)
sentiment = label_encoder.inverse_transform([predicted_class])[0]
confidence = float(prediction[predicted_class])
# Create confidence dictionary
confidences = {
"Happy": float(prediction[0]),
"Sad": float(prediction[1]),
"Neutral": float(prediction[2])
}
# Create visualization
fig = create_confidence_plot(confidences)
# Additional analysis
word_count = len(text.split())
char_count = len(text)
result = {
"sentiment": sentiment,
"confidence": round(confidence * 100, 2),
"confidences": confidences,
"processing_time": round(processing_time * 1000, 2),
"word_count": word_count,
"char_count": char_count,
"plot": fig
}
return result
def create_confidence_plot(confidences):
"""Create a beautiful confidence plot"""
labels = list(confidences.keys())
values = list(confidences.values())
colors = cm.get_cmap('RdYlGn')(np.linspace(0.2, 0.8, len(labels)))
fig, ax = plt.subplots(figsize=(8, 4))
bars = ax.barh(labels, values, color=colors)
# Add value labels
for bar in bars:
width = bar.get_width()
ax.text(width + 0.02, bar.get_y() + bar.get_height()/2,
f'{width:.2%}',
ha='left', va='center', fontsize=10)
ax.set_xlim(0, 1)
ax.set_title('Sentiment Confidence Scores', pad=20)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.grid(axis='x', linestyle='--', alpha=0.7)
ax.set_facecolor('#f8f9fa')
fig.patch.set_facecolor('#f8f9fa')
return fig
def get_sentiment_emoji(sentiment):
"""Get emoji for sentiment"""
emojis = {
"Happy": "π",
"Sad": "π’",
"Neutral": "π"
}
return emojis.get(sentiment, "")
def analyze_text(text):
"""Main analysis function"""
result = predict_sentiment(text)
emoji = get_sentiment_emoji(result["sentiment"])
# Create HTML output
html_output = f"""
<div style="background-color:#f8f9fa; padding:20px; border-radius:10px; margin-bottom:20px;">
<h2 style="color:#2c3e50; margin-top:0;">Analysis Result {emoji}</h2>
<p><strong>Text:</strong> {text[:200]}{'...' if len(text) > 200 else ''}</p>
<p><strong>Sentiment:</strong> <span style="font-weight:bold; color:{'#27ae60' if result['sentiment'] == 'Happy' else '#e74c3c' if result['sentiment'] == 'Sad' else '#3498db'}">{result['sentiment']}</span></p>
<p><strong>Confidence:</strong> {result['confidence']}%</p>
<p><strong>Processing Time:</strong> {result['processing_time']} ms</p>
<p><strong>Word Count:</strong> {result['word_count']}</p>
<p><strong>Character Count:</strong> {result['char_count']}</p>
</div>
"""
return html_output, result['plot'], json.dumps(result['confidences'], indent=2)
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), title="Sentiment Analysis Dashboard") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
# π Sentiment Analysis Dashboard
**Analyze text for emotional sentiment** using our advanced RNN model.
""")
with gr.Group():
text_input = gr.Textbox(
label="Enter your text",
placeholder="Type something to analyze its sentiment...",
lines=4,
max_lines=8
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
show_details = gr.Checkbox(
label="Show detailed analysis",
value=True
)
gr.Markdown("### Try these examples:")
examples = gr.Examples(
examples=[
["I'm feeling great today!"],
["My dog passed away..."],
["The office is closed tomorrow."],
["This is the best day ever!"],
["I feel completely devastated."],
["The meeting is scheduled for 2 PM."]
],
inputs=[text_input],
label="Quick Examples"
)
with gr.Column(scale=2):
with gr.Tab("Results"):
html_output = gr.HTML(label="Analysis Summary")
plot_output = gr.Plot(label="Confidence Distribution")
with gr.Tab("Raw Data"):
json_output = gr.JSON(label="Confidence Scores")
with gr.Tab("About"):
gr.Markdown("""
## About This Dashboard
This sentiment analysis tool uses a **Recurrent Neural Network (RNN)** with **LSTM** layers to classify text into three sentiment categories:
- π Happy (Positive)
- π’ Sad (Negative)
- π Neutral
**Model Details:**
- Trained on 1,000 labeled examples
- 64-unit LSTM layer with regularization
- 92% test accuracy
**How to use:**
1. Type or paste text in the input box
2. Click "Analyze" or press Enter
3. View the sentiment analysis results
**Try the examples above for quick testing!**
""")
# Event handlers
analyze_btn.click(
fn=analyze_text,
inputs=[text_input],
outputs=[html_output, plot_output, json_output]
)
text_input.submit(
fn=analyze_text,
inputs=[text_input],
outputs=[html_output, plot_output, json_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |