Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import json | |
import tensorflow as tf | |
from tensorflow.keras.models import model_from_json | |
import os | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Initialize model components | |
model = None | |
scaler = None | |
feature_names = [] | |
model_loaded = False | |
def load_model(): | |
global model, scaler, feature_names, model_loaded | |
try: | |
# Verify all required files exist | |
required_files = ['model_architecture.json', 'final_model.h5', 'scaler.pkl', 'metadata.json'] | |
for file in required_files: | |
if not os.path.exists(file): | |
raise FileNotFoundError(f"Missing required file: {file}") | |
logger.info("Loading model architecture...") | |
with open('model_architecture.json', 'r') as json_file: | |
model_json = json_file.read() | |
model = model_from_json(model_json) | |
logger.info("Loading model weights...") | |
model.load_weights('final_model.h5') | |
logger.info("Loading scaler...") | |
with open('scaler.pkl', 'rb') as f: | |
scaler = pickle.load(f) | |
logger.info("Loading metadata...") | |
with open('metadata.json', 'r') as f: | |
metadata = json.load(f) | |
feature_names = metadata.get('feature_names', ['Score 1', 'Score 2']) # Default names | |
model_loaded = True | |
logger.info("β Model loaded successfully!") | |
logger.info(f"Features: {feature_names}") | |
except Exception as e: | |
logger.error(f"β Model loading failed: {str(e)}") | |
feature_names = ['Score 1', 'Score 2'] # Default names if loading fails | |
model_loaded = False | |
# Load model at startup | |
load_model() | |
def predict(*args): | |
try: | |
if not model_loaded: | |
raise RuntimeError("Model failed to load. Check server logs for details.") | |
if len(args) != len(feature_names): | |
raise ValueError(f"Expected {len(feature_names)} features, got {len(args)}") | |
# Create input dictionary | |
input_data = {} | |
for i, val in enumerate(args): | |
try: | |
input_data[feature_names[i]] = float(val) | |
except ValueError: | |
raise ValueError(f"Invalid value for {feature_names[i]}: {val}") | |
# Create DataFrame | |
input_df = pd.DataFrame([input_data], columns=feature_names) | |
# Scale features | |
scaled_input = scaler.transform(input_df) | |
# Predict | |
probability = float(model.predict(scaled_input, verbose=0)[0][0]) | |
prediction = "Eligible" if probability > 0.5 else "Not Eligible" | |
confidence = abs(probability - 0.5) * 2 | |
return prediction, f"{probability:.4f}", f"{confidence:.4f}" | |
except Exception as e: | |
logger.error(f"Prediction error: {str(e)}") | |
return f"Error: {str(e)}", "N/A", "N/A" | |
# Create Gradio interface | |
with gr.Blocks(title="Student Eligibility Predictor") as demo: | |
gr.Markdown("# π Student Eligibility Predictor") | |
gr.Markdown("Predict student eligibility based on academic performance metrics") | |
with gr.Row(): | |
with gr.Column(): | |
# Create input components based on actual features | |
inputs = [] | |
for feature in feature_names: | |
inputs.append(gr.Number(label=feature, value=75)) | |
predict_btn = gr.Button("Predict", variant="primary") | |
with gr.Column(): | |
prediction_output = gr.Textbox(label="Prediction") | |
probability_output = gr.Textbox(label="Probability") | |
confidence_output = gr.Textbox(label="Confidence") | |
# Setup examples | |
examples = [] | |
if len(feature_names) >= 2: | |
examples = [[75, 80]] # Basic example with two features | |
else: | |
examples = [[75]] # Fallback example | |
gr.Examples( | |
examples=examples, | |
inputs=inputs, | |
outputs=[prediction_output, probability_output, confidence_output], | |
fn=predict, | |
cache_examples=False | |
) | |
predict_btn.click( | |
fn=predict, | |
inputs=inputs, | |
outputs=[prediction_output, probability_output, confidence_output] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |