Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,208 @@
|
|
1 |
-
from fastapi import FastAPI, Request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
|
|
4 |
import torch
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
# Load tokenizer
|
11 |
-
|
|
|
12 |
|
13 |
-
|
14 |
-
use_gpu = torch.cuda.is_available()
|
15 |
|
16 |
-
if
|
17 |
-
print("
|
18 |
model = AutoModel.from_pretrained(
|
19 |
-
|
20 |
device_map="auto",
|
21 |
torch_dtype=torch.float16,
|
22 |
load_in_4bit=True
|
23 |
)
|
24 |
else:
|
25 |
-
print("
|
26 |
model = AutoModel.from_pretrained(
|
27 |
-
|
28 |
device_map="cpu",
|
29 |
torch_dtype=torch.float32
|
30 |
)
|
31 |
|
32 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
class
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
async def
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
44 |
|
45 |
with torch.no_grad():
|
46 |
outputs = model(**inputs)
|
47 |
-
|
48 |
-
|
49 |
-
# Convert to list for JSON serialization
|
50 |
-
return {"embedding": embeddings[0].cpu().tolist()}
|
51 |
-
|
52 |
|
|
|
53 |
|
54 |
|
|
|
1 |
+
# from fastapi import FastAPI, Request
|
2 |
+
# from pydantic import BaseModel
|
3 |
+
# from transformers import AutoModel, AutoTokenizer
|
4 |
+
# import torch
|
5 |
+
|
6 |
+
# app = FastAPI()
|
7 |
+
|
8 |
+
# model_id = "Qwen/Qwen3-Embedding-0.6B"
|
9 |
+
|
10 |
+
# # Load tokenizer
|
11 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id)
|
12 |
+
|
13 |
+
# # Load model with GPU if available, else CPU
|
14 |
+
# use_gpu = torch.cuda.is_available()
|
15 |
+
|
16 |
+
# if use_gpu:
|
17 |
+
# print("CUDA is available, loading model with 4-bit quantization on GPU.")
|
18 |
+
# model = AutoModel.from_pretrained(
|
19 |
+
# model_id,
|
20 |
+
# device_map="auto",
|
21 |
+
# torch_dtype=torch.float16,
|
22 |
+
# load_in_4bit=True
|
23 |
+
# )
|
24 |
+
# else:
|
25 |
+
# print("CUDA not available, loading model without 4-bit quantization on CPU.")
|
26 |
+
# model = AutoModel.from_pretrained(
|
27 |
+
# model_id,
|
28 |
+
# device_map="cpu",
|
29 |
+
# torch_dtype=torch.float32
|
30 |
+
# )
|
31 |
+
|
32 |
+
# model.eval()
|
33 |
+
|
34 |
+
# class TextInput(BaseModel):
|
35 |
+
# text: str
|
36 |
+
|
37 |
+
# @app.post("/embed")
|
38 |
+
# async def embed_text(input: TextInput):
|
39 |
+
# inputs = tokenizer(input.text, return_tensors="pt", truncation=True, max_length=512)
|
40 |
+
|
41 |
+
# # Move input tensors to same device as model
|
42 |
+
# device = next(model.parameters()).device
|
43 |
+
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
44 |
+
|
45 |
+
# with torch.no_grad():
|
46 |
+
# outputs = model(**inputs)
|
47 |
+
# embeddings = outputs.last_hidden_state.mean(dim=1) # Mean pooling
|
48 |
+
|
49 |
+
# # Convert to list for JSON serialization
|
50 |
+
# return {"embedding": embeddings[0].cpu().tolist()}
|
51 |
+
|
52 |
+
# from fastapi import FastAPI
|
53 |
+
# from pydantic import BaseModel
|
54 |
+
# from typing import List
|
55 |
+
# from transformers import AutoTokenizer, AutoModel
|
56 |
+
# import torch
|
57 |
+
# import torch.nn.functional as F
|
58 |
+
|
59 |
+
# app = FastAPI()
|
60 |
+
|
61 |
+
# # Model config
|
62 |
+
# MODEL_ID = "Qwen/Qwen3-Embedding-0.6B"
|
63 |
+
# USE_GPU = torch.cuda.is_available()
|
64 |
+
|
65 |
+
# # Load tokenizer
|
66 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side='left')
|
67 |
+
|
68 |
+
# # Load model with appropriate settings
|
69 |
+
# if USE_GPU:
|
70 |
+
# print("🔋 Loading model on GPU with 4-bit quantization...")
|
71 |
+
# model = AutoModel.from_pretrained(
|
72 |
+
# MODEL_ID,
|
73 |
+
# device_map="auto",
|
74 |
+
# torch_dtype=torch.float16,
|
75 |
+
# load_in_4bit=True
|
76 |
+
# )
|
77 |
+
# else:
|
78 |
+
# print("🧠 Loading model on CPU...")
|
79 |
+
# model = AutoModel.from_pretrained(
|
80 |
+
# MODEL_ID,
|
81 |
+
# device_map="cpu",
|
82 |
+
# torch_dtype=torch.float32
|
83 |
+
# )
|
84 |
+
|
85 |
+
# model.eval()
|
86 |
+
# device = next(model.parameters()).device
|
87 |
+
|
88 |
+
# # Input schema
|
89 |
+
# class EmbedRequest(BaseModel):
|
90 |
+
# texts: List[str]
|
91 |
+
|
92 |
+
# # Output schema
|
93 |
+
# class EmbedResponse(BaseModel):
|
94 |
+
# embeddings: List[List[float]]
|
95 |
+
|
96 |
+
# # Masked mean pooling (ignores padded tokens)
|
97 |
+
# def masked_mean_pooling(last_hidden_state, attention_mask):
|
98 |
+
# mask = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
99 |
+
# masked_embeddings = last_hidden_state * mask
|
100 |
+
# summed = masked_embeddings.sum(dim=1)
|
101 |
+
# counts = mask.sum(dim=1)
|
102 |
+
# return summed / counts.clamp(min=1e-9)
|
103 |
+
|
104 |
+
# @app.post("/embed", response_model=EmbedResponse)
|
105 |
+
# async def embed_texts(request: EmbedRequest):
|
106 |
+
# # Tokenize input texts
|
107 |
+
# inputs = tokenizer(
|
108 |
+
# request.texts,
|
109 |
+
# return_tensors="pt",
|
110 |
+
# padding=True,
|
111 |
+
# truncation=True,
|
112 |
+
# max_length=32768 # Qwen supports long sequences
|
113 |
+
# )
|
114 |
+
# inputs = {k: v.to(device) for k, v in inputs.items()}
|
115 |
+
|
116 |
+
# # Get embeddings
|
117 |
+
# with torch.no_grad():
|
118 |
+
# outputs = model(**inputs)
|
119 |
+
# pooled = masked_mean_pooling(outputs.last_hidden_state, inputs['attention_mask'])
|
120 |
+
# normalized = F.normalize(pooled, p=2, dim=1)
|
121 |
+
|
122 |
+
# return {"embeddings": normalized.cpu().tolist()}
|
123 |
+
|
124 |
+
from fastapi import FastAPI, HTTPException, Header, Depends
|
125 |
from pydantic import BaseModel
|
126 |
+
from typing import List, Optional
|
127 |
+
from transformers import AutoTokenizer, AutoModel
|
128 |
import torch
|
129 |
+
import torch.nn.functional as F
|
130 |
+
import os
|
131 |
+
from dotenv import load_dotenv
|
132 |
|
133 |
+
# Load environment variables from .env (if present)
|
134 |
+
load_dotenv()
|
135 |
+
|
136 |
+
# Load API key from environment variable
|
137 |
+
API_KEY = os.environ.get("API_KEY")
|
138 |
+
if not API_KEY:
|
139 |
+
raise RuntimeError("❌ EMBEDDING_API_KEY not set in environment!")
|
140 |
|
141 |
+
# Initialize FastAPI
|
142 |
+
app = FastAPI()
|
143 |
|
144 |
+
# Load tokenizer & model
|
145 |
+
MODEL_ID = "Qwen/Qwen3-Embedding-0.6B"
|
146 |
+
USE_GPU = torch.cuda.is_available()
|
147 |
|
148 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side='left')
|
|
|
149 |
|
150 |
+
if USE_GPU:
|
151 |
+
print("🔋 Using GPU with 4-bit quantization")
|
152 |
model = AutoModel.from_pretrained(
|
153 |
+
MODEL_ID,
|
154 |
device_map="auto",
|
155 |
torch_dtype=torch.float16,
|
156 |
load_in_4bit=True
|
157 |
)
|
158 |
else:
|
159 |
+
print("🧠 Using CPU")
|
160 |
model = AutoModel.from_pretrained(
|
161 |
+
MODEL_ID,
|
162 |
device_map="cpu",
|
163 |
torch_dtype=torch.float32
|
164 |
)
|
165 |
|
166 |
model.eval()
|
167 |
+
device = next(model.parameters()).device
|
168 |
+
|
169 |
+
# Schema
|
170 |
+
class EmbedRequest(BaseModel):
|
171 |
+
texts: List[str]
|
172 |
|
173 |
+
class EmbedResponse(BaseModel):
|
174 |
+
embeddings: List[List[float]]
|
175 |
|
176 |
+
# Auth dependency
|
177 |
+
async def verify_api_key(x_api_key: Optional[str] = Header(None)):
|
178 |
+
if x_api_key != API_KEY:
|
179 |
+
raise HTTPException(status_code=401, detail="Invalid or missing API key")
|
180 |
|
181 |
+
# Masked mean pooling
|
182 |
+
def masked_mean_pooling(last_hidden_state, attention_mask):
|
183 |
+
mask = attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
|
184 |
+
masked_embeddings = last_hidden_state * mask
|
185 |
+
summed = masked_embeddings.sum(dim=1)
|
186 |
+
counts = mask.sum(dim=1)
|
187 |
+
return summed / counts.clamp(min=1e-9)
|
188 |
+
|
189 |
+
# Endpoint
|
190 |
+
@app.post("/embed", response_model=EmbedResponse, dependencies=[Depends(verify_api_key)])
|
191 |
+
async def embed_texts(request: EmbedRequest):
|
192 |
+
inputs = tokenizer(
|
193 |
+
request.texts,
|
194 |
+
return_tensors="pt",
|
195 |
+
padding=True,
|
196 |
+
truncation=True,
|
197 |
+
max_length=32768
|
198 |
+
)
|
199 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
200 |
|
201 |
with torch.no_grad():
|
202 |
outputs = model(**inputs)
|
203 |
+
pooled = masked_mean_pooling(outputs.last_hidden_state, inputs['attention_mask'])
|
204 |
+
normalized = F.normalize(pooled, p=2, dim=1)
|
|
|
|
|
|
|
205 |
|
206 |
+
return {"embeddings": normalized.cpu().tolist()}
|
207 |
|
208 |
|