Update Dockerfile
Browse files- Dockerfile +53 -99
Dockerfile
CHANGED
|
@@ -1,99 +1,53 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
model.train()
|
| 55 |
-
train_loss = 0
|
| 56 |
-
correct = 0
|
| 57 |
-
total = 0
|
| 58 |
-
|
| 59 |
-
for batch_idx, (data, target) in enumerate(tqdm(train_loader, desc="Training", leave=False)):
|
| 60 |
-
optimizer.zero_grad()
|
| 61 |
-
output = model(data)
|
| 62 |
-
loss = criterion(output, target)
|
| 63 |
-
loss.backward()
|
| 64 |
-
optimizer.step()
|
| 65 |
-
|
| 66 |
-
train_loss += loss.item()
|
| 67 |
-
_, predicted = torch.max(output.data, 1)
|
| 68 |
-
total += target.size(0)
|
| 69 |
-
correct += (predicted == target).sum().item()
|
| 70 |
-
|
| 71 |
-
acc = correct / total
|
| 72 |
-
items = {'accuracy': acc, 'loss': train_loss / len(train_loader)}
|
| 73 |
-
aim_run.track(items, epoch=epoch, context={'subset': 'train'})
|
| 74 |
-
|
| 75 |
-
track_params_dists(model, aim_run, epoch=epoch, context={'subset': 'train'})
|
| 76 |
-
track_gradients_dists(model, aim_run, epoch=epoch, context={'subset': 'train'})
|
| 77 |
-
|
| 78 |
-
model.eval()
|
| 79 |
-
test_loss = 0
|
| 80 |
-
correct = 0
|
| 81 |
-
total = 0
|
| 82 |
-
|
| 83 |
-
with torch.no_grad():
|
| 84 |
-
for batch_idx, (data, target) in enumerate(tqdm(test_loader, desc="Testing", leave=False)):
|
| 85 |
-
output = model(data)
|
| 86 |
-
loss = criterion(output, target)
|
| 87 |
-
test_loss += loss.item()
|
| 88 |
-
_, predicted = torch.max(output.data, 1)
|
| 89 |
-
total += target.size(0)
|
| 90 |
-
correct += (predicted == target).sum().item()
|
| 91 |
-
|
| 92 |
-
acc = correct / total
|
| 93 |
-
items = {'accuracy': acc, 'loss': test_loss / len(test_loader)}
|
| 94 |
-
aim_run.track(items, epoch=epoch, context={'subset': 'test'})
|
| 95 |
-
|
| 96 |
-
track_params_dists(model, aim_run, epoch=epoch, context={'subset': 'test'})
|
| 97 |
-
track_gradients_dists(model, aim_run, epoch=epoch, context={'subset': 'test'})
|
| 98 |
-
|
| 99 |
-
torch.save(model.state_dict(), 'mnist_cnn.pth')
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
RUN useradd -m -u 1000 aim_user
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Switch to the "aim_user" user
|
| 14 |
+
USER aim_user
|
| 15 |
+
|
| 16 |
+
# Set home to the user's home directory
|
| 17 |
+
ENV HOME=/home/aim_user \
|
| 18 |
+
PATH=/home/aim_user/.local/bin:$PATH
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# Set the working directory to the user's home directory
|
| 26 |
+
WORKDIR $HOME
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# install the `aim` package on the latest version
|
| 34 |
+
RUN pip install aim
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
RUN aim telemetry off
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
ENTRYPOINT ["/bin/sh", "-c"]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
COPY aim_repo.tar.gz .
|
| 47 |
+
RUN tar xvzf aim_repo.tar.gz
|
| 48 |
+
# have to run `aim init` in the directory that stores aim data for
|
| 49 |
+
# otherwise `aim up` will prompt for confirmation to create the directory itself.
|
| 50 |
+
# We run aim listening on 0.0.0.0 to expose all ports. Also, we run
|
| 51 |
+
# using `--dev` to print verbose logs. Port 43800 is the default port of
|
| 52 |
+
# `aim up` but explicit is better than implicit.
|
| 53 |
+
CMD ["aim up --host 0.0.0.0 --port 7860 --workers 2"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|