Spaces:
Sleeping
Sleeping
File size: 14,535 Bytes
3f54dd3 29a9269 9c2ca71 3f54dd3 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 9c2ca71 29a9269 3f54dd3 3cecaab 29a9269 9c2ca71 60b414a 9c2ca71 60b414a 29a9269 60b414a 29a9269 60b414a 29a9269 60b414a 29a9269 60b414a 29a9269 60b414a 9c2ca71 60b414a 29a9269 60b414a 29a9269 3cecaab 3f54dd3 9c2ca71 3f54dd3 3cecaab 60b414a 9c2ca71 3cecaab 29a9269 9c2ca71 29a9269 60b414a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import gradio as gr
from transformers import pipeline
import re
import pickle
import torch
import torch.nn as nn
from torchtext.transforms import PadTransform
from torch.nn import functional as F
from tqdm import tqdm
from underthesea import text_normalize
# Build Vocabulary
device = "cpu"
# Build Vocabulary
MAX_LENGTH = 20
class Vocabulary:
"""The Vocabulary class is used to record words, which are used to convert
text to numbers and vice versa.
"""
def __init__(self, lang="vi"):
self.lang = lang
self.word2id = dict()
self.word2id["<sos>"] = 0 # Start of Sentence Token
self.word2id["<eos>"] = 1 # End of Sentence Token
self.word2id["<unk>"] = 2 # Unknown Token
self.word2id["<pad>"] = 3 # Pad Token
self.sos_id = self.word2id["<sos>"]
self.eos_id = self.word2id["<eos>"]
self.unk_id = self.word2id["<unk>"]
self.pad_id = self.word2id["<pad>"]
self.id2word = {v: k for k, v in self.word2id.items()}
self.pad_transform = PadTransform(max_length = MAX_LENGTH, pad_value = self.pad_id)
def __getitem__(self, word):
"""Return ID of word if existed else return ID unknown token
@param word (str)
"""
return self.word2id.get(word, self.unk_id)
def __contains__(self, word):
"""Return True if word in Vocabulary else return False
@param word (str)
"""
return word in self.word2id
def __len__(self):
"""
Return number of tokens(include sos, eos, unk and pad tokens) in Vocabulary
"""
return len(self.word2id)
def lookup_tokens(self, word_indexes: list):
"""Return the list of words by lookup by ID
@param word_indexes (list(int))
@return words (list(str))
"""
return [self.id2word[word_index] for word_index in word_indexes]
def add(self, word):
"""Add word to vocabulary
@param word (str)
@return index (str): index of the word just added
"""
if word not in self:
word_index = self.word2id[word] = len(self.word2id)
self.id2word[word_index] = word
return word_index
else:
return self[word]
def preprocessing_sent(self, sent, lang="en"):
"""Preprocessing a sentence (depend on language english or vietnamese)
@param sent (str)
@param lang (str)
"""
# Lowercase sentence and remove space at beginning and ending
sent = sent.lower().strip()
# Replace HTML charecterist
sent = re.sub("'", "'", sent)
sent = re.sub(""", '"', sent)
sent = re.sub("[", "[", sent)
sent = re.sub("]", "]", sent)
# Remove unnecessary space
sent = re.sub("(?<=\w)\.", " .", sent)
# Normalizing the distance between tokens (word and punctuation)
sent = re.sub("(?<=\w),", " ,", sent)
sent = re.sub("(?<=\w)\?", " ?", sent)
sent = re.sub("(?<=\w)\!", " !", sent)
sent = re.sub(" +", " ", sent)
if (lang == "en") or (lang == "eng") or (lang == "english"):
# Replace short form
sent = re.sub("what's", "what is", sent)
sent = re.sub("who's", "who is", sent)
sent = re.sub("which's", "which is", sent)
sent = re.sub("who's", "who is", sent)
sent = re.sub("here's", "here is", sent)
sent = re.sub("there's", "there is", sent)
sent = re.sub("it's", "it is", sent)
sent = re.sub("i'm", "i am", sent)
sent = re.sub("'re ", " are ", sent)
sent = re.sub("'ve ", " have ", sent)
sent = re.sub("'ll ", " will ", sent)
sent = re.sub("'d ", " would ", sent)
sent = re.sub("aren't", "are not", sent)
sent = re.sub("isn't", "is not", sent)
sent = re.sub("don't", "do not", sent)
sent = re.sub("doesn't", "does not", sent)
sent = re.sub("wasn't", "was not", sent)
sent = re.sub("weren't", "were not", sent)
sent = re.sub("won't", "will not", sent)
sent = re.sub("can't", "can not", sent)
sent = re.sub("let's", "let us", sent)
else:
# Package underthesea.text_normalize support to normalize vietnamese
sent = text_normalize(sent)
if not sent.endswith(('.', '!', '?')):
sent = sent + ' .'
return sent.strip()
def tokenize_corpus(self, corpus, disable=False):
"""Split the documents of the corpus into words
@param corpus (list(str)): list of documents
@param disable (bool): notified or not
@return tokenized_corpus (list(list(str))): list of words
"""
if not disable:
print("Tokenize the corpus...")
tokenized_corpus = list()
for document in tqdm(corpus, disable=disable):
tokenized_document = ["<sos>"] + self.preprocessing_sent(document, self.lang).split(" ") + ["<eos>"]
tokenized_corpus.append(tokenized_document)
return tokenized_corpus
def corpus_to_tensor(self, corpus, is_tokenized=False, disable=False):
"""Convert corpus to a list of indices tensor
@param corpus (list(str) if is_tokenized==False else list(list(str)))
@param is_tokenized (bool)
@return indicies_corpus (list(tensor))
"""
if is_tokenized:
tokenized_corpus = corpus
else:
tokenized_corpus = self.tokenize_corpus(corpus, disable=disable)
indicies_corpus = list()
for document in tqdm(tokenized_corpus, disable=disable):
indicies_document = torch.tensor(
list(map(lambda word: self[word], document)), dtype=torch.int64
)
indicies_corpus.append(self.pad_transform(indicies_document))
return indicies_corpus
def tensor_to_corpus(self, tensor, disable=False):
"""Convert list of indices tensor to a list of tokenized documents
@param indicies_corpus (list(tensor))
@return corpus (list(list(str)))
"""
corpus = list()
for indicies in tqdm(tensor, disable=disable):
document = list(map(lambda index: self.id2word[index.item()], indicies))
corpus.append(document)
return corpus
with open("vocab_source_final.pkl", "rb") as file:
VOCAB_SOURCE = pickle.load(file)
with open("vocab_target_final.pkl", "rb") as file:
VOCAB_TARGET = pickle.load(file)
input_embedding = torch.zeros((len(VOCAB_SOURCE), 100))
output_embedding = torch.zeros((len(VOCAB_TARGET), 100))
def create_input_emb_layer(pretrained = False):
if not pretrained:
weights_matrix = torch.zeros((len(VOCAB_SOURCE), 100))
else:
weights_matrix = input_embedding
num_embeddings, embedding_dim = weights_matrix.size()
emb_layer = nn.Embedding(num_embeddings, embedding_dim)
emb_layer.weight.data = weights_matrix
emb_layer.weight.requires_grad = False
return emb_layer, embedding_dim
def create_output_emb_layer(pretrained = False):
if not pretrained:
weights_matrix = torch.zeros((len(VOCAB_TARGET), 100))
else:
weights_matrix = output_embedding
num_embeddings, embedding_dim = weights_matrix.size()
emb_layer = nn.Embedding(num_embeddings, embedding_dim)
emb_layer.weight.data = weights_matrix
emb_layer.weight.requires_grad = False
return emb_layer, embedding_dim
class EncoderAtt(nn.Module):
def __init__(self, input_dim, hidden_dim, dropout = 0.1):
""" Encoder RNN
@param input_dim (int): size of vocab_souce
@param hidden_dim (int)
@param dropout (float): dropout ratio of layer drop out
"""
super(EncoderAtt, self).__init__()
self.hidden_dim = hidden_dim
# Using pretrained Embedding
self.embedding, self.embedding_dim = create_input_emb_layer(True)
self.gru = nn.GRU(self.embedding_dim, hidden_dim, batch_first=True)
self.dropout = nn.Dropout(dropout)
def forward(self, src):
embedded = self.dropout(self.embedding(src))
output, hidden = self.gru(embedded)
return output, hidden
class BahdanauAttention(nn.Module):
def __init__(self, hidden_size):
""" Bahdanau Attention
@param hidden_size (int)
"""
super(BahdanauAttention, self).__init__()
self.Wa = nn.Linear(hidden_size, hidden_size)
self.Ua = nn.Linear(hidden_size, hidden_size)
self.Va = nn.Linear(hidden_size, 1)
def forward(self, query, keys):
scores = self.Va(torch.tanh(self.Wa(query) + self.Ua(keys)))
scores = scores.squeeze(2).unsqueeze(1)
weights = F.softmax(scores, dim=-1)
context = torch.bmm(weights, keys)
return context, weights
class DecoderAtt(nn.Module):
def __init__(self, hidden_size, output_size, dropout=0.1):
""" Decoder RNN using Attention
@param hidden_size (int)
@param output_size (int): size of vocab_target
@param dropout (float): dropout ratio of layer drop out
"""
super(DecoderAtt, self).__init__()
# Using pretrained Embedding
self.embedding, self.embedding_dim = create_output_emb_layer(True)
self.fc = nn.Linear(self.embedding_dim, hidden_size)
self.attention = BahdanauAttention(hidden_size)
self.gru = nn.GRU(2 * hidden_size, hidden_size, batch_first=True)
self.out = nn.Linear(hidden_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):
batch_size = encoder_outputs.size(0)
decoder_input = torch.empty(batch_size, 1, dtype=torch.long, device=device).fill_(0)
decoder_hidden = encoder_hidden
decoder_outputs = []
attentions = []
for i in range(MAX_LENGTH):
decoder_output, decoder_hidden, attn_weights = self.forward_step(
decoder_input, decoder_hidden, encoder_outputs
)
decoder_outputs.append(decoder_output)
attentions.append(attn_weights)
# Teacher forcing
if target_tensor is not None:
# Teacher forcing: Feed the target as the next input
decoder_input = target_tensor[:, i].unsqueeze(1) # Teacher forcing
else:
# Without teacher forcing: use its own predictions as the next input
_, topi = decoder_output.topk(1)
decoder_input = topi.squeeze(-1).detach() # detach from history as input
decoder_outputs = torch.cat(decoder_outputs, dim=1)
decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)
attentions = torch.cat(attentions, dim=1)
return decoder_outputs, decoder_hidden, attentions
def forward_step(self, input, hidden, encoder_outputs):
embedded = self.dropout(self.fc(self.embedding(input)))
query = hidden.permute(1, 0, 2)
context, attn_weights = self.attention(query, encoder_outputs)
input_gru = torch.cat((embedded, context), dim=2)
output, hidden = self.gru(input_gru, hidden)
output = self.out(output)
return output, hidden, attn_weights
# Load VietAI Translation
envit5_translater = pipeline("translation", model="VietAI/envit5-translation")
INPUT_DIM = len(VOCAB_SOURCE)
OUTPUT_DIM = len(VOCAB_TARGET)
HID_DIM = 512
# Load our Model Translation
ENCODER = EncoderAtt(INPUT_DIM, HID_DIM)
ENCODER.load_state_dict(torch.load("encoderatt_epoch_35.pt", map_location=torch.device('cpu')))
DECODER = DecoderAtt(HID_DIM, OUTPUT_DIM)
DECODER.load_state_dict(torch.load("decoderatt_epoch_35.pt", map_location=torch.device('cpu')))
def evaluate_final_model(sentence, encoder, decoder, vocab_source, vocab_target, disable = False):
""" Evaluation Model
@param encoder (EncoderAtt)
@param decoder (DecoderAtt)
@param sentence (str)
@param vocab_source (Vocabulary)
@param vocab_target (Vocabulary)
@param disable (bool)
"""
encoder.eval()
decoder.eval()
with torch.no_grad():
input_tensor = vocab_source.corpus_to_tensor([sentence], disable = disable)[0].view(1,-1).to(device)
encoder_outputs, encoder_hidden = encoder(input_tensor)
decoder_outputs, decoder_hidden, decoder_attn = decoder(encoder_outputs, encoder_hidden)
_, topi = decoder_outputs.topk(1)
decoded_ids = topi.squeeze()
decoded_words = []
for idx in decoded_ids:
if idx.item() == vocab_target.eos_id:
decoded_words.append('<eos>')
break
decoded_words.append(vocab_target.id2word[idx.item()])
return decoded_words, decoder_attn
def translate_sentence(sentence):
output_words, _ = evaluate_final_model(sentence, ENCODER, DECODER, VOCAB_SOURCE, VOCAB_TARGET, disable= True)
if "<pad>" in output_words:
output_words.remove("<pad>")
if "<unk>" in output_words:
output_words.remove("<unk>")
if "<sos>" in output_words:
output_words.remove("<sos>")
if "<eos>" in output_words:
output_words.remove("<eos>")
return ' '.join(output_words).capitalize()
def envit5_translation(text):
res = envit5_translater(
text,
max_length=512,
early_stopping=True,
)[0]["translation_text"][3:]
return res
def translation(text):
output1 = translate_sentence(text)
if not text.endswith(('.', '!', '?')):
text = text + '.'
output2 = envit5_translation(text)
return (output1, output2)
if __name__ == "__main__":
examples = [["Hello guys", "Input"],
["Xin chào các bạn", "Output"]]
demo = gr.Interface(
theme = gr.themes.Base(),
fn=translation,
title="Co Gai Mo Duong",
description="""
## Machine Translation: English to Vietnamese
""",
examples=examples,
inputs=[
gr.Textbox(
lines=5, placeholder="Enter text", label="Input"
)
],
outputs=[
gr.Textbox(
"text", label="Our Machine Translation"
),
gr.Textbox(
"text", label="VietAI Machine Translation"
)
]
)
demo.launch(share = True)
|