Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Model multitask (Topik & Sentimen)
|
7 |
+
class MultiTaskModel(nn.Module):
|
8 |
+
def __init__(self, base_model_name, num_topic_classes, num_sentiment_classes):
|
9 |
+
super(MultiTaskModel, self).__init__()
|
10 |
+
self.encoder = AutoModel.from_pretrained(base_model_name)
|
11 |
+
hidden_size = self.encoder.config.hidden_size
|
12 |
+
self.topic_classifier = nn.Linear(hidden_size, num_topic_classes)
|
13 |
+
self.sentiment_classifier = nn.Linear(hidden_size, num_sentiment_classes)
|
14 |
+
|
15 |
+
def forward(self, input_ids, attention_mask):
|
16 |
+
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
17 |
+
pooled_output = outputs.last_hidden_state[:, 0]
|
18 |
+
topic_logits = self.topic_classifier(pooled_output)
|
19 |
+
sentiment_logits = self.sentiment_classifier(pooled_output)
|
20 |
+
return topic_logits, sentiment_logits
|
21 |
+
|
22 |
+
# Load tokenizer & model
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("tokenizer")
|
24 |
+
model = MultiTaskModel("indobenchmark/indobert-base-p1", num_topic_classes=4, num_sentiment_classes=3)
|
25 |
+
model.load_state_dict(torch.load("model.pt", map_location=torch.device("cpu")))
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
# Label mapping
|
29 |
+
topic_labels = ["Produk", "Layanan", "Pengiriman", "Lainnya"]
|
30 |
+
sentiment_labels = ["Negatif", "Netral", "Positif"]
|
31 |
+
|
32 |
+
# Fungsi klasifikasi
|
33 |
+
def klasifikasi(text):
|
34 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
35 |
+
with torch.no_grad():
|
36 |
+
topic_logits, sentiment_logits = model(**inputs)
|
37 |
+
topic_probs = torch.softmax(topic_logits, dim=-1).squeeze()
|
38 |
+
sentiment_probs = torch.softmax(sentiment_logits, dim=-1).squeeze()
|
39 |
+
|
40 |
+
topic_result = {label: float(prob) for label, prob in zip(topic_labels, topic_probs)}
|
41 |
+
sentiment_result = {label: float(prob) for label, prob in zip(sentiment_labels, sentiment_probs)}
|
42 |
+
return {"Topik": topic_result, "Sentimen": sentiment_result}
|
43 |
+
|
44 |
+
# Gradio UI
|
45 |
+
demo = gr.Interface(fn=klasifikasi, inputs="text", outputs="json", title="Klasifikasi Topik dan Sentimen Pelanggan")
|
46 |
+
demo.launch()
|