Spaces:
Running
Running
File size: 45,262 Bytes
7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 7dd9869 77180e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
# from PIL import Image
# import blobfile as bf
# from mpi4py import MPI
import numpy as np
from torch.utils.data import DataLoader, Dataset
from transformers import (
AutoModelForCausalLM,
AutoConfig,
AutoTokenizer,
default_data_collator,
PreTrainedTokenizerFast,
PreTrainedTokenizer,
)
# from datasets import load_dataset
import sys, os
import torch
# sys.path.insert(0, os.path.join(sys.path[0], '../../transformers/examples/pytorch/language-modeling'))
# from custom_trainer import GPT2LMHeadModelCompress, BERTModelCompress, AutoEncoderWithNoise
from collections import Counter, defaultdict
from functools import partial
from itertools import chain
def load_data_text(
*,
data_dir,
batch_size,
image_size,
class_cond=False,
deterministic=False,
data_args=None,
task_mode="roc",
model=None,
padding_mode="block",
split="train",
load_vocab=None,
):
"""
For a dataset, create a generator over (images, kwargs) pairs.
Each images is an NCHW float tensor, and the kwargs dict contains zero or
more keys, each of which map to a batched Tensor of their own.
The kwargs dict can be used for class labels, in which case the key is "y"
and the values are integer tensors of class labels.
:param data_dir: a dataset directory.
:param batch_size: the batch size of each returned pair.
:param image_size: the size to which images are resized.
:param class_cond: if True, include a "y" key in returned dicts for class
label. If classes are not available and this is true, an
exception will be raised.
:param deterministic: if True, yield results in a deterministic order.
"""
print("hello loading text data. ")
if data_args.experiment.startswith("random") and model is None:
model = None
# elif data_args.experiment.startswith('random') and model is not None:
# print('loading initialized random embeddings. ')
if task_mode == "roc" or task_mode == "roc-aug":
pass
# training_data, model = get_corpus_rocstory(data_args, model, image_size,
# padding_mode=padding_mode, split=split,
# load_vocab=load_vocab)
elif task_mode == "simple-wiki":
pass
# training_data, model = get_corpus_rocstory(data_args, model, image_size,
# padding_mode=padding_mode, split=split,
# load_vocab=load_vocab)
elif task_mode == "e2e-tgt":
print("hello loading e2e-tgt. ")
training_data, model = get_corpus_rocstory(
data_args,
model,
image_size,
padding_mode=padding_mode,
split=split,
load_vocab=load_vocab,
)
# elif task_mode == 'yelp':
# print('hello loading yelp ')
# training_data, model = get_corpus_rocstory(data_args, model, image_size,
# padding_mode=padding_mode, split=split,
# load_vocab=load_vocab)
# elif task_mode == 'commonGen' or task_mode == 'commonGen-aug':
# print('hello loading common-gen ')
# training_data, model = get_corpus_rocstory(data_args, model, image_size,
# padding_mode=padding_mode, split=split,
# load_vocab=load_vocab)
# elif task_mode == 'e2e':
# training_data, model = get_corpus_rocstory(data_args, model, image_size,
# padding_mode=padding_mode, split=split,
# load_vocab=load_vocab)
# elif task_mode == 'book':
# tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
# training_data, model = get_corpus_book(data_args, tokenizer, model, image_size,
# padding_mode=padding_mode, split=split,)
if (
data_args.modality
in ["roc-aug", "roc", "book", "yelp", "commonGen", "commonGen-aug"]
and data_args.cache_mode == "no"
):
pass # dataset = TextDataset_NoCache(
# training_data,
# image_size,
# data_args,
# model_arch=data_args.model_arch,
# model_emb=model
# )
else:
dataset = TextDataset(
training_data,
image_size,
data_args,
model_arch=data_args.model_arch,
)
if deterministic:
pass # data_loader = DataLoader(
# dataset,
# batch_size=batch_size, # 20,
# drop_last=True,
# shuffle=False,
# num_workers=1,
# )
else:
data_loader = DataLoader(
dataset,
batch_size=batch_size, # 20,
drop_last=True,
shuffle=True,
num_workers=1,
)
while True:
yield from data_loader
def helper_tokenize_encode_cond(sentence_lst, vocab_dict, model, seqlen, data_args):
result_train_lst = []
group_lst = defaultdict(list)
with torch.no_grad():
for src_ids, input_ids in sentence_lst:
tokenized_ = [vocab_dict.get(x, vocab_dict["UNK"]) for x in input_ids]
tokenized_src = [vocab_dict.get(x, vocab_dict["UNK"]) for x in src_ids]
input_ids = [0] + tokenized_ + [1]
group_lst["word_ids"].append(input_ids)
group_lst["src_ids"].append(tokenized_src)
print(group_lst["word_ids"][:2])
print("padding mode is pad")
max_length = seqlen
group_lst["word_ids"] = _collate_batch_helper(
group_lst["word_ids"], vocab_dict["PAD"], max_length
)
max_src_length = max([len(xx) for xx in group_lst["src_ids"]])
print(max_src_length, seqlen)
max_src_length = min(seqlen, max_src_length)
group_lst["src_ids"], group_lst["src_mask"] = _collate_batch_helper(
group_lst["src_ids"], vocab_dict["PAD"], max_src_length, return_mask=True
)
for input_ids, src_ids, src_mask in zip(
group_lst["word_ids"], group_lst["src_ids"], group_lst["src_mask"]
):
if data_args.experiment.startswith("random"):
hidden_state = model(torch.tensor(input_ids))
elif data_args.experiment == "gpt2_pre_compress":
input_ids2 = torch.tensor(input_ids).to(model.device)
input_embs = model.transformer.wte(input_ids2) # input_embs
hidden_state = model.down_proj(input_embs)
hidden_state = hidden_state * data_args.emb_scale_factor
result_train_lst.append(
{
"input_ids": input_ids,
"hidden_states": hidden_state.cpu().tolist(),
"src_ids": src_ids,
"src_mask": src_mask,
}
)
return result_train_lst
def helper_tokenize_stream(
sentence_lst,
vocab_dict,
model,
seqlen,
data_args,
padding_mode,
):
import psutil
# Process.memory_info is expressed in bytes, so convert to megabytes
print(f"RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
from datasets import Dataset as Dataset2
raw_datasets = Dataset2.from_dict({"text": sentence_lst})
print(raw_datasets)
print(f"RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
def tokenize_function(examples):
if isinstance(vocab_dict, dict):
input_ids = [
[0] + [vocab_dict.get(x, vocab_dict["UNK"]) for x in seq] + [1]
for seq in examples["text"]
]
elif isinstance(vocab_dict, PreTrainedTokenizerFast):
examples["text"] = [" ".join(seq) for seq in examples["text"]]
input_ids = vocab_dict(examples["text"], add_special_tokens=True)[
"input_ids"
]
result_dict = {"input_ids": input_ids}
# clm input could be much much longer than block_size
return result_dict
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=4,
remove_columns=["text"],
load_from_cache_file=True,
desc="Running tokenizer on dataset",
)
print(tokenized_datasets)
print(f"RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
if padding_mode == "block":
block_size = seqlen
def group_texts(examples):
concatenated_examples = {
k: list(chain(*examples[k])) for k in examples.keys()
}
total_length = len(concatenated_examples[list(examples.keys())[0]])
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
else:
def pad_function(group_lst):
max_length = seqlen
if isinstance(vocab_dict, dict):
group_lst["input_ids"] = _collate_batch_helper(
group_lst["input_ids"], vocab_dict["PAD"], max_length
)
else:
group_lst["input_ids"] = _collate_batch_helper(
group_lst["input_ids"], vocab_dict.pad_token_id, max_length
)
return group_lst
# Process.memory_info is expressed in bytes, so convert to megabytes
print(f"RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
lm_datasets = tokenized_datasets.map(
pad_function,
batched=True,
num_proc=1,
desc=f"padding",
)
print(lm_datasets, "padded dataset")
print(f"RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
import datasets
raw_datasets = datasets.DatasetDict()
raw_datasets["train"] = lm_datasets
print(f"RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
return raw_datasets
def helper_tokenize_encode(
sentence_lst,
vocab_dict,
model,
seqlen,
data_args,
padding_mode,
):
result_train_lst = []
group_lst = defaultdict(list)
with torch.no_grad():
for input_ids in sentence_lst:
tokenized_ = [vocab_dict.get(x, vocab_dict["UNK"]) for x in input_ids]
input_ids = [0] + tokenized_ + [1]
group_lst["word_ids"].append(input_ids)
print(group_lst["word_ids"][:2])
if padding_mode == "block":
print("padding mode is block")
concatenated_examples = {k: sum(group_lst[k], []) for k in group_lst.keys()}
total_length = len(concatenated_examples[list(group_lst.keys())[0]])
block_size = seqlen
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
group_lst = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
elif padding_mode == "pad":
print("padding mode is pad")
max_length = seqlen
group_lst["word_ids"] = _collate_batch_helper(
group_lst["word_ids"], vocab_dict["PAD"], max_length
)
for input_ids in group_lst["word_ids"]:
if data_args.experiment.startswith("random"):
hidden_state = model(torch.tensor(input_ids))
elif data_args.experiment == "gpt2_pre_compress":
input_ids2 = torch.tensor(input_ids).to(model.device)
input_embs = model.transformer.wte(input_ids2) # input_embs
hidden_state = model.down_proj(input_embs)
hidden_state = hidden_state * data_args.emb_scale_factor
elif data_args.experiment == "glove":
hidden_state = model(torch.tensor(input_ids))
result_train_lst.append(
{"input_ids": input_ids, "hidden_states": hidden_state.cpu().tolist()}
)
return result_train_lst
def load_glove_model(File):
print("Loading Glove Model")
glove_model = {}
with open(File, "r") as f:
for line in f:
split_line = line.split()
word = split_line[0]
embedding = torch.tensor(np.array(split_line[1:], dtype=np.float64))
# embedding = np.array(split_line[1:], dtype=np.float64)
glove_model[word] = embedding
print(f"{len(glove_model)} words loaded!")
return glove_model
def load_glove(vocab):
model = torch.nn.Embedding(len(vocab), 50)
glove_model = load_glove_model("predictability/glove/glove.6B.50d.txt")
array_lst = []
count_ = 0
for word, idx in vocab.items():
if word in glove_model:
array_lst.append(glove_model[word])
else:
count_ += 1
array_lst.append(torch.randn(50))
print(f"{count_} out of {len(vocab)} is initialized. ")
array_lst = torch.stack(array_lst)
print(torch.norm(array_lst, dim=-1).mean())
model.weight.data = array_lst
return model
def get_corpus_rocstory(
data_args, model, image_size, padding_mode="block", split="train", load_vocab=None
):
import csv, torch, json
from spacy.lang.en import English
if data_args.experiment_mode == "lm":
if data_args.modality == "roc":
pass
# print('loading dataset from ROCStory')
# nlp = English()
# tokenizer = nlp.tokenizer
# sentence_lst = []
# print(f'loading from {data_args.roc_train}')
# if split == 'train':
# print('loading form the TRAIN set')
# path = f'{data_args.roc_train}/roc_train.json'
# elif split == 'valid':
# print('loading form the VALID set')
# path = f'{data_args.roc_train}/roc_valid.json'
# else:
# assert False, "invalid split for ROC dataset"
# with open(path, 'r') as roc_reader:
# for row in roc_reader:
# sentences = json.loads(row)[0].strip()
# word_lst = [x.text for x in tokenizer(sentences)]
# sentence_lst.append(word_lst)
# # with open(data_args.roc_train, 'r') as csvfile:
# # roc_reader = csv.reader(csvfile) #delimiter=' ', quotechar='|')
# # for row in roc_reader:
# # # tokenize.
# # sentences = " ".join(row[2:])
# # word_lst = [x.text for x in tokenizer(sentences)]
# # sentence_lst.append(word_lst)
# # sentence_lst = sentence_lst[1:]
# print(sentence_lst[:2])
if data_args.modality == "roc-aug":
pass
# print('loading dataset from ROCStory')
# nlp = English()
# tokenizer = nlp.tokenizer
# sentence_lst = []
# if split == 'train':
# print('loading form the TRAIN set')
# path_lst = [f'{data_args.roc_train}/roc_train.json']
# path_lst.append('diffusion_lm/improved-diffusion/diff_models/rocstories_gptj.txt')
# # path_lst.append('diffusion_lm/improved-diffusion/cache/ar_model_augment_roc.json')
# # path_lst.append('diffusion_lm/improved-diffusion/cache/ar_model_augment_roc2.json')
# elif split == 'valid':
# print('loading form the VALID set')
# path_lst = [f'{data_args.roc_train}/roc_valid.json']
# else:
# assert False, "invalid split for ROC dataset"
# print(path_lst)
# for path in path_lst:
# if path.endswith('txt'):
# with open(path, 'r') as roc_reader:
# for row in roc_reader:
# sentences = row.strip()
# word_lst = [x.text for x in tokenizer(sentences)]
# sentence_lst.append(word_lst)
# else:
# with open(path, 'r') as roc_reader:
# for row in roc_reader:
# sentences = json.loads(row)[0].strip()
# word_lst = [x.text for x in tokenizer(sentences)]
# sentence_lst.append(word_lst)
# print(sentence_lst[:2],sentence_lst[-2:], 'dataset size=',len(sentence_lst))
elif data_args.modality == "simple-wiki":
pass
# print('loading dataset from simple wikipedia')
# sentence_lst = []
# with open(data_args.wiki_train, 'r') as ff:
# for row in ff:
# word_lst = row.lower().split()
# sentence_lst.append(word_lst)
# print(sentence_lst[:2])
elif data_args.modality == "e2e-tgt":
print("loading dataset from simple e2e dataset")
sentence_lst = []
nlp = English()
tokenizer = nlp.tokenizer
if split == "train":
print("loading form the TRAIN set")
path = (
"/data0/gonghaisong/Diffusion-LM/datasets/e2e_data/src1_train.txt"
)
# path = f'../{data_args.e2e_train}/src1_train.txt'
elif split == "valid":
print("loading form the VALID set")
path = f"../{data_args.e2e_train}/src1_valid.txt"
path = (
"/data0/gonghaisong/Diffusion-LM/datasets/e2e_data/src1_valid.txt"
)
elif split == "test":
print("loading form the TEST set")
path = f"../{data_args.e2e_train}/src1_test.txt"
path = "/data0/gonghaisong/Diffusion-LM/datasets/e2e_data/src1_test.txt"
elif split == "debug":
print("loading form the DEBUG set")
path = data_args.debug_path
import json
with open(path, "r") as ff:
for line in ff:
sentence_lst.append(json.loads(line)[0].split(" "))
sentence_lst = sentence_lst + sentence_lst
if split in ["train", "valid", "test"]:
with open(path, "r") as ff:
for row in ff:
word_lst = row.split("||")[1]
word_lst = [x.text for x in tokenizer(word_lst)]
sentence_lst.append(word_lst)
print(sentence_lst[:2])
elif data_args.modality == "yelp":
print("loading dataset from simple YelpNLG dataset")
sentence_lst = []
nlp = English()
tokenizer = nlp.tokenizer
if split == "train":
print("loading form the TRAIN set")
path = f"{data_args.yelp_train}/yelpnlg-train.csv"
elif split == "valid":
print("loading form the VALID set")
path = f"{data_args.yelp_train}/yelpnlg-dev.csv"
elif split == "test":
print("loading form the TEST set")
path = f"{data_args.yelp_train}/yelpnlg-test.csv"
if split in ["train", "valid", "test"]:
with open(path, "r") as csvfile:
yelp_reader = csv.reader(csvfile) # delimiter=' ', quotechar='|')
for row in yelp_reader:
sentences = row[1]
word_lst = [x.text for x in tokenizer(sentences)]
sentence_lst.append(word_lst)
sentence_lst = sentence_lst[1:]
print(sentence_lst[:2])
elif data_args.modality == "commonGen":
print("loading dataset from simple YelpNLG dataset")
sentence_lst = []
nlp = English()
tokenizer = nlp.tokenizer
if split == "train":
print("loading form the TRAIN set")
path = f"{data_args.commonGen_train}/commongen.train.jsonl"
elif split == "valid":
print("loading form the VALID set")
path = f"{data_args.commonGen_train}/commongen.dev.jsonl"
elif split == "test":
print("loading form the TEST set")
path = f"{data_args.commonGen_train}/commongen.test.jsonl"
if split in ["train", "valid", "test"]:
with open(path, "r") as ff:
for line in ff:
line = json.loads(line)
for sentences in line["scene"]:
word_lst = [x.text for x in tokenizer(sentences)]
sentence_lst.append(word_lst)
print(sentence_lst[:2])
elif data_args.modality == "commonGen-aug":
print("loading dataset from simple YelpNLG dataset")
sentence_lst = []
nlp = English()
tokenizer = nlp.tokenizer
if split == "train":
print("loading form the TRAIN set")
path = f"{data_args.commonGen_train}/commongen.train.jsonl"
path_lst = [f"{data_args.roc_train}/roc_train.json"]
path_lst.append(
"diffusion_lm/improved-diffusion/diff_models/rocstories_gptj.txt"
)
elif split == "valid":
print("loading form the VALID set")
path = f"{data_args.commonGen_train}/commongen.dev.jsonl"
path_lst = []
elif split == "test":
print("loading form the TEST set")
path = f"{data_args.commonGen_train}/commongen.test.jsonl"
path_lst = []
if split in ["train", "valid", "test"]:
with open(path, "r") as ff:
for line in ff:
line = json.loads(line)
for sentences in line["scene"]:
word_lst = [x.text for x in tokenizer(sentences)]
sentence_lst.append(word_lst)
print(sentence_lst[:2])
import itertools
for path in path_lst:
if path.endswith("txt"):
with open(path, "r") as roc_reader:
for row in roc_reader:
sentences = row.strip()
word_lst = [x.text for x in tokenizer(sentences)]
spl = [[]]
for x, y in itertools.groupby(word_lst, lambda z: z == "."):
spl[-1].extend(y)
if x:
spl.append([])
sentence_lst.extend(spl[:-1])
else:
with open(path, "r") as roc_reader:
for row in roc_reader:
sentences = json.loads(row)[0].strip()
word_lst = [x.text for x in tokenizer(sentences)]
spl = [[]]
for x, y in itertools.groupby(word_lst, lambda z: z == "."):
spl[-1].extend(y)
if x:
spl.append([])
sentence_lst.extend(spl[:-1])
print(sentence_lst[-2:])
# get tokenizer.
if load_vocab is None:
counter = Counter()
for input_ids in sentence_lst:
counter.update(input_ids)
if data_args.experiment_mode == "conditional_gen":
if data_args.modality == "e2e":
print("loading dataset from simple e2e dataset")
sentence_lst = []
nlp = English()
tokenizer = nlp.tokenizer
if split == "train":
path = f"{data_args.e2e_train}/src1_train.txt"
with open(path, "r") as ff:
for row in ff:
src_lst, word_lst = row.split("||")
word_lst = [x.text for x in tokenizer(word_lst)]
src_lst = [x.text for x in tokenizer(src_lst)]
sentence_lst.append((src_lst, word_lst))
elif split == "valid":
path = f"{data_args.e2e_train}/src1_valid.txt"
sentence_lst = read_e2e_files(path, data_args, tokenizer)
print(sentence_lst[:2])
# get tokenizer.
if load_vocab is None:
counter = Counter()
for src_ids, input_ids in sentence_lst:
counter.update(input_ids)
counter.update(src_ids)
if load_vocab is None:
vocab_dict = {"START": 0, "END": 1, "UNK": 2, "PAD": 3}
for k, v in counter.items():
if v > 10:
vocab_dict[k] = len(vocab_dict)
print(len(counter), len(vocab_dict))
path_save_vocab = "/data0/gonghaisong/Diffusion-LM/improved-diffusion/diffusion_models/diff_e2e-tgt_block_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart_e2e/vocab.json"
print(f"save the vocab to {path_save_vocab}")
with open(path_save_vocab, "w") as f:
json.dump(vocab_dict, f)
else:
vocab_dict = load_vocab
path_save_vocab = "/data0/gonghaisong/Diffusion-LM/improved-diffusion/diffusion_models/diff_e2e-tgt_block_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart_e2e/vocab.json"
if not os.path.exists(path_save_vocab):
print(f"save the vocab to {path_save_vocab}")
if isinstance(vocab_dict, dict):
with open(path_save_vocab, "w") as f:
json.dump(vocab_dict, f)
assert vocab_dict["START"] == 0
elif isinstance(vocab_dict, PreTrainedTokenizerFast):
vocab_dict.save_pretrained(data_args.checkpoint_path)
else:
assert False, "invalid type of vocab_dict"
if model is None and data_args.experiment == "random":
model = torch.nn.Embedding(len(vocab_dict), data_args.in_channel)
print("initializing the random embeddings", model)
torch.nn.init.normal_(model.weight)
path_save = "/data0/gonghaisong/Diffusion-LM/improved-diffusion/diffusion_models/diff_e2e-tgt_block_rand16_transformer_lr0.0001_0.0_2000_sqrt_Lsimple_h128_s2_d0.1_sd102_xstart_e2e/random_emb.torch"
print(
f"save the random encoder to {data_args.checkpoint_path}/random_emb.torch"
)
torch.save(model.state_dict(), path_save)
# path_save = f'{data_args.checkpoint_path}/random_emb.torch'
# if not os.path.exists(path_save) and data_args.experiment == 'random':
# torch.save(model.state_dict(), path_save)
if (
data_args.experiment_mode == "lm"
and data_args.modality
in ["roc-aug", "roc", "yelp", "commonGen", "commonGen-aug"]
and data_args.cache_mode == "no"
):
train_dataset = helper_tokenize_stream(
sentence_lst, vocab_dict, model, image_size**2, data_args, padding_mode
)
return train_dataset, model
elif data_args.experiment_mode == "lm":
result_train_lst = helper_tokenize_encode(
sentence_lst, vocab_dict, model, image_size**2, data_args, padding_mode
)
elif data_args.experiment_mode == "conditional_gen":
result_train_lst = helper_tokenize_encode_cond(
sentence_lst, vocab_dict, model, image_size**2, data_args
)
return {"train": result_train_lst}, model
def write_e2e_corr(prompt_lst, file_dict, corr_path):
print(len(prompt_lst))
with open(corr_path, "w") as f:
for x in prompt_lst:
for line in file_dict[x]:
print(" ".join(line), file=f)
print("", file=f)
def write_e2e_src(prompt_lst, corr_path):
with open(corr_path, "w") as f:
for x in prompt_lst:
print(" ".join(x), file=f)
return
def read_e2e_files(path, args, tokenizer):
file_dict = {}
with open(path, "r") as f:
for line in f:
src_lst, word_lst = line.strip().split("||")
tgt = tuple([x.text for x in tokenizer(word_lst)])
src = tuple([x.text for x in tokenizer(src_lst)])
if src not in file_dict:
file_dict[src] = []
file_dict[src].append(tgt)
temp = "1"
prompt_text_dict = file_dict
prompt_text_lst = list(prompt_text_dict.keys())
gold_dir = os.path.join(args.out_dir, "{}_{}_{}".format(temp, args.split, "gold"))
print("gold dir", gold_dir)
write_e2e_corr(prompt_text_lst, prompt_text_dict, gold_dir)
src_dir = os.path.join(args.out_dir, "{}_{}_{}".format(temp, args.split, "src"))
write_e2e_src(prompt_text_lst, src_dir)
final_lst = [(xx, prompt_text_dict[xx][0]) for xx in prompt_text_lst]
return final_lst
def get_corpus_book(
data_args,
tokenizer,
model,
image_size,
padding_mode="block",
split="train",
):
max_length = image_size**2
import os
assert padding_mode == "block"
raw_datasets = load_dataset("bookcorpus")
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
"bookcorpus",
split=f"train[:1%]",
)
raw_datasets["train"] = load_dataset(
"bookcorpus",
split=f"train[1%:]",
)
print(raw_datasets)
column_names = raw_datasets["train"].column_names
def tokenize_function(examples):
output = tokenizer(examples["text"], add_special_tokens=False)
return output
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=True,
)
print(tokenized_datasets)
block_size = max_length
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=4,
load_from_cache_file=True,
desc=f"Grouping texts in chunks of {block_size}",
)
print(lm_datasets)
if model is None:
if data_args.training_mode.startswith("e2e"):
print("since its e2e, initialize a dummy embedding")
model = torch.nn.Embedding(len(tokenizer), 1)
else:
model = torch.nn.Embedding(len(tokenizer), data_args.in_channel)
print("initializing the random embeddings", model)
torch.nn.init.normal_(model.weight)
path_save = f"{data_args.checkpoint_path}/random_emb.torch"
print(
f"save the random encoder to {data_args.checkpoint_path}/random_emb.torch"
)
torch.save(model.state_dict(), path_save)
if split == "train":
return lm_datasets, model
else:
lm_datasets["train"] = lm_datasets["validation"]
return lm_datasets, model
class TextDataset(Dataset):
def __init__(
self,
text_datasets,
resolution,
data_args,
model_arch="conv-unet",
classes=None,
shard=0,
num_shards=1,
eigen_transform=None,
mapping_func=None,
model_emb=None,
):
super().__init__()
self.resolution = resolution
self.text_datasets = text_datasets
self.length = len(self.text_datasets["train"])
self.model_arch = model_arch
self.data_args = data_args
print(self.resolution)
self.eigen_transform = eigen_transform
self.mapping_func = mapping_func
self.model_emb = model_emb
# self.local_images = image_paths[shard:][::num_shards]
# self.local_classes = None if classes is None else classes[shard:][::num_shards]
def __len__(self):
return self.length
def __getitem__(self, idx):
# We are not on a new enough PIL to support the `reducing_gap`
# argument, which uses BOX downsampling at powers of two first.
# Thus, we do it by hand to improve downsample quality.
if self.model_arch == "conv-unet":
pass # arr = np.array(self.text_datasets['train'][idx]['hidden_states'],
# dtype=np.float32).reshape(self.resolution, self.resolution, -1)
# # print(self.eigen_transform.shape)
# if self.eigen_transform is not None:
# old_shape = arr.shape
# arr = arr.reshape(1, -1) - self.eigen_transform['mean']
# arr = arr @ self.eigen_transform['map']
# arr = arr.reshape(old_shape)
# if hasattr(self.data_args, 'noise_level') and self.data_args.noise_level > 0:
# arr = arr + self.data_args.noise_level * np.random.randn(*arr.shape).astype(arr.dtype)
# out_dict = {}
# out_dict['input_ids'] = np.array(self.text_datasets['train'][idx]['input_ids'])
# # if self.local_classes is not None:
# # out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
# # print(out_dict.keys())
# return np.transpose(arr, [2, 0, 1]), out_dict
elif self.model_arch == "1d-unet":
pass # arr = np.array(self.text_datasets['train'][idx]['hidden_states'],
# dtype=np.float32) # seqlen, dim
# if self.eigen_transform is not None:
# old_shape = arr.shape
# arr = arr.reshape(1, -1) - self.eigen_transform['mean']
# arr = arr @ self.eigen_transform['map']
# arr = arr.reshape(old_shape)
# if hasattr(self.data_args, 'noise_level') and self.data_args.noise_level > 0:
# arr = arr + self.data_args.noise_level * np.random.randn(*arr.shape).astype(arr.dtype)
# arr = np.transpose(arr, [1, 0])
# out_dict = {}
# out_dict['input_ids'] = np.array(self.text_datasets['train'][idx]['input_ids'])
# # out_dict['mapping_func'] = self.mapping_func
# # if self.local_classes is not None:
# # out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
# # print(arr.shape)
# return arr, out_dict
else:
arr = np.array(
self.text_datasets["train"][idx]["hidden_states"], dtype=np.float32
)
if self.eigen_transform is not None:
old_shape = arr.shape
# arr = arr.reshape(1, -1) @ self.eigen_transform
arr = arr.reshape(1, -1) - self.eigen_transform["mean"]
arr = arr @ self.eigen_transform["map"]
arr = arr.reshape(old_shape)
if (
hasattr(self.data_args, "noise_level")
and self.data_args.noise_level > 0
):
# print(arr.dtype)
# print(self.data_args.noise_level, 'using the noise level.')
arr = arr + self.data_args.noise_level * np.random.randn(
*arr.shape
).astype(arr.dtype)
# print(arr.dtype)
out_dict = {}
out_dict["input_ids"] = np.array(
self.text_datasets["train"][idx]["input_ids"]
)
# out_dict['mapping_func'] = self.mapping_func
if self.data_args.experiment_mode == "conditional_gen":
out_dict["src_ids"] = np.array(
self.text_datasets["train"][idx]["src_ids"]
)
out_dict["src_mask"] = np.array(
self.text_datasets["train"][idx]["src_mask"]
)
# if self.local_classes is not None:
# out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
return arr, out_dict
# print(arr.dtype)
# arr = arr.float()
# print(arr.shape)
class TextDataset_NoCache(Dataset):
def __init__(
self,
text_datasets,
resolution,
data_args,
model_arch="conv-unet",
classes=None,
shard=0,
num_shards=1,
eigen_transform=None,
mapping_func=None,
model_emb=None,
):
super().__init__()
self.resolution = resolution
self.text_datasets = text_datasets
self.length = len(self.text_datasets["train"])
self.model_arch = model_arch
self.data_args = data_args
print(self.resolution)
self.eigen_transform = eigen_transform
self.mapping_func = mapping_func
self.model_emb = model_emb
# self.local_images = image_paths[shard:][::num_shards]
# self.local_classes = None if classes is None else classes[shard:][::num_shards]
def __len__(self):
return self.length
def __getitem__(self, idx):
# We are not on a new enough PIL to support the `reducing_gap`
# argument, which uses BOX downsampling at powers of two first.
# Thus, we do it by hand to improve downsample quality.
with torch.no_grad():
input_ids = self.text_datasets["train"][idx]["input_ids"]
model = self.model_emb
if self.data_args.experiment.startswith("random"):
hidden_state = model(torch.tensor(input_ids))
elif self.data_args.experiment == "gpt2_pre_compress":
input_ids2 = torch.tensor(input_ids).to(model.device)
input_embs = model.transformer.wte(input_ids2) # input_embs
hidden_state = model.down_proj(input_embs)
hidden_state = hidden_state * data_args.emb_scale_factor
if self.model_arch == "conv-unet":
arr = np.array(hidden_state, dtype=np.float32).reshape(
self.resolution, self.resolution, -1
)
# print(self.eigen_transform.shape)
if self.eigen_transform is not None:
old_shape = arr.shape
arr = arr.reshape(1, -1) - self.eigen_transform["mean"]
arr = arr @ self.eigen_transform["map"]
arr = arr.reshape(old_shape)
if (
hasattr(self.data_args, "noise_level")
and self.data_args.noise_level > 0
):
arr = arr + self.data_args.noise_level * np.random.randn(
*arr.shape
).astype(arr.dtype)
out_dict = {}
out_dict["input_ids"] = np.array(
self.text_datasets["train"][idx]["input_ids"]
)
# if self.local_classes is not None:
# out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
# print(out_dict.keys())
return np.transpose(arr, [2, 0, 1]), out_dict
elif self.model_arch == "1d-unet":
arr = np.array(hidden_state, dtype=np.float32) # seqlen, dim
if self.eigen_transform is not None:
old_shape = arr.shape
arr = arr.reshape(1, -1) - self.eigen_transform["mean"]
arr = arr @ self.eigen_transform["map"]
arr = arr.reshape(old_shape)
if (
hasattr(self.data_args, "noise_level")
and self.data_args.noise_level > 0
):
arr = arr + self.data_args.noise_level * np.random.randn(
*arr.shape
).astype(arr.dtype)
arr = np.transpose(arr, [1, 0])
out_dict = {}
out_dict["input_ids"] = np.array(
self.text_datasets["train"][idx]["input_ids"]
)
# out_dict['mapping_func'] = self.mapping_func
# if self.local_classes is not None:
# out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
# print(arr.shape)
return arr, out_dict
else:
arr = np.array(hidden_state, dtype=np.float32)
if self.eigen_transform is not None:
old_shape = arr.shape
# arr = arr.reshape(1, -1) @ self.eigen_transform
arr = arr.reshape(1, -1) - self.eigen_transform["mean"]
arr = arr @ self.eigen_transform["map"]
arr = arr.reshape(old_shape)
if (
hasattr(self.data_args, "noise_level")
and self.data_args.noise_level > 0
):
# print(arr.dtype)
# print(self.data_args.noise_level, 'using the noise level.')
arr = arr + self.data_args.noise_level * np.random.randn(
*arr.shape
).astype(arr.dtype)
# print(arr.dtype)
out_dict = {}
out_dict["input_ids"] = np.array(
self.text_datasets["train"][idx]["input_ids"]
)
# out_dict['mapping_func'] = self.mapping_func
if self.data_args.experiment_mode == "conditional_gen":
out_dict["src_ids"] = np.array(
self.text_datasets["train"][idx]["src_ids"]
)
out_dict["src_mask"] = np.array(
self.text_datasets["train"][idx]["src_mask"]
)
# if self.local_classes is not None:
# out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
return arr, out_dict
def _collate_batch_helper(examples, pad_token_id, max_length, return_mask=False):
result = torch.full(
[len(examples), max_length], pad_token_id, dtype=torch.int64
).tolist()
mask_ = torch.full(
[len(examples), max_length], pad_token_id, dtype=torch.int64
).tolist()
for i, example in enumerate(examples):
curr_len = min(len(example), max_length)
result[i][:curr_len] = example[:curr_len]
mask_[i][:curr_len] = [1] * curr_len
if return_mask:
return result, mask_
return result
def _torch_collate_batch(examples, pad_token_id, max_length):
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
import numpy as np
import torch
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple, np.ndarray)):
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
# length_of_first = examples[0].size(0)
# Check if padding is necessary.
# are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
# if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):
# return torch.stack(examples, dim=0)
# Creating the full tensor and filling it with our data.
# max_length = max(x.size(0) for x in examples)
# if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
# max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
result = examples[0].new_full([len(examples), max_length], pad_token_id)
for i, example in enumerate(examples):
if True:
result[i, : example.shape[0]] = example
else:
result[i, -example.shape[0] :] = example
return result
|