File size: 46,952 Bytes
752fda7
 
 
 
 
 
 
 
34cb6f5
 
752fda7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc10f59
752fda7
fc10f59
 
 
 
 
 
 
 
 
 
752fda7
 
 
 
 
 
 
34cb6f5
 
 
 
752fda7
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6675e
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15ce75
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6675e
b15ce75
 
 
 
 
 
 
 
 
 
34cb6f5
 
 
 
 
 
 
 
 
b15ce75
34cb6f5
 
 
 
 
 
b15ce75
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15ce75
 
 
3e6675e
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6675e
 
 
752fda7
3e6675e
 
 
 
 
 
 
752fda7
3e6675e
 
 
 
 
 
 
752fda7
3e6675e
 
752fda7
3e6675e
 
 
 
 
 
fc10f59
34cb6f5
3e6675e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15ce75
3e6675e
 
 
 
 
752fda7
3e6675e
 
 
 
752fda7
3e6675e
752fda7
3e6675e
 
 
 
 
752fda7
3e6675e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15ce75
752fda7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6675e
752fda7
34cb6f5
 
 
 
 
 
 
b15ce75
34cb6f5
 
 
b15ce75
34cb6f5
 
 
 
 
 
752fda7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6675e
 
 
752fda7
 
 
 
 
 
 
 
 
fc10f59
752fda7
fc10f59
3e6675e
 
 
 
fc10f59
 
752fda7
 
 
 
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752fda7
34cb6f5
b15ce75
fc10f59
3e6675e
34cb6f5
752fda7
34cb6f5
 
 
 
 
 
 
 
 
 
 
3e6675e
34cb6f5
 
752fda7
3e6675e
752fda7
 
34cb6f5
 
 
b15ce75
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752fda7
 
 
 
 
 
 
 
fc10f59
34cb6f5
fc10f59
 
 
 
 
 
 
 
 
 
 
 
 
 
752fda7
fc10f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752fda7
fc10f59
752fda7
fc10f59
34cb6f5
fc10f59
 
 
 
34cb6f5
 
 
fc10f59
 
752fda7
 
fc10f59
 
 
752fda7
 
 
fc10f59
752fda7
 
3e6675e
b15ce75
3e6675e
 
 
b15ce75
 
 
34cb6f5
b15ce75
752fda7
 
 
 
 
 
 
 
 
fc10f59
752fda7
 
 
 
 
 
 
 
 
 
 
b15ce75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cb6f5
b15ce75
 
 
 
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
b15ce75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cb6f5
 
b15ce75
 
 
 
 
 
 
 
 
 
 
34cb6f5
b15ce75
34cb6f5
 
 
 
 
 
 
b15ce75
 
34cb6f5
b15ce75
 
 
 
 
 
 
 
 
 
 
 
34cb6f5
 
b15ce75
 
 
 
 
 
 
 
 
 
 
 
 
3e6675e
 
 
34cb6f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6675e
 
 
 
 
 
 
 
 
752fda7
 
 
34cb6f5
 
 
 
 
 
 
 
 
 
 
752fda7
3e6675e
 
 
 
 
 
 
 
 
752fda7
3e6675e
 
 
b15ce75
3e6675e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cb6f5
 
3e6675e
 
 
 
 
 
 
 
 
 
 
 
 
 
34cb6f5
 
3e6675e
 
 
 
 
 
 
 
752fda7
3e6675e
 
 
 
 
 
 
 
 
 
34cb6f5
3e6675e
34cb6f5
3e6675e
 
 
 
 
 
 
34cb6f5
b15ce75
3e6675e
 
 
 
 
 
 
 
 
 
34cb6f5
3e6675e
 
 
b15ce75
 
3e6675e
 
 
 
 
b15ce75
 
 
34cb6f5
b15ce75
 
 
 
3e6675e
 
b15ce75
 
3e6675e
 
 
 
 
34cb6f5
3e6675e
 
 
 
34cb6f5
3e6675e
 
 
 
34cb6f5
3e6675e
34cb6f5
 
 
3e6675e
 
34cb6f5
3e6675e
34cb6f5
 
3e6675e
 
 
 
 
 
34cb6f5
3e6675e
 
 
34cb6f5
 
b15ce75
 
 
 
 
3e6675e
b15ce75
 
 
 
3e6675e
 
 
 
 
 
 
 
 
b15ce75
3e6675e
b15ce75
3e6675e
34cb6f5
 
 
 
 
 
 
3e6675e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
import gradio as gr
import requests
import pandas as pd
import folium
from folium.plugins import MarkerCluster
import tempfile
import os
import json
import time
from concurrent.futures import ThreadPoolExecutor, as_completed

# Get API credentials from environment variables
EPA_AQS_API_BASE_URL = "https://aqs.epa.gov/data/api"
EMAIL = os.environ.get("EPA_AQS_EMAIL", "")  # Get from environment variable
API_KEY = os.environ.get("EPA_AQS_API_KEY", "")  # Get from environment variable

class AirQualityApp:
    def __init__(self):
        self.states = {
            "AL": "Alabama", "AK": "Alaska", "AZ": "Arizona", "AR": "Arkansas", 
            "CA": "California", "CO": "Colorado", "CT": "Connecticut", "DE": "Delaware", 
            "FL": "Florida", "GA": "Georgia", "HI": "Hawaii", "ID": "Idaho", 
            "IL": "Illinois", "IN": "Indiana", "IA": "Iowa", "KS": "Kansas", 
            "KY": "Kentucky", "LA": "Louisiana", "ME": "Maine", "MD": "Maryland", 
            "MA": "Massachusetts", "MI": "Michigan", "MN": "Minnesota", "MS": "Mississippi", 
            "MO": "Missouri", "MT": "Montana", "NE": "Nebraska", "NV": "Nevada", 
            "NH": "New Hampshire", "NJ": "New Jersey", "NM": "New Mexico", "NY": "New York", 
            "NC": "North Carolina", "ND": "North Dakota", "OH": "Ohio", "OK": "Oklahoma", 
            "OR": "Oregon", "PA": "Pennsylvania", "RI": "Rhode Island", "SC": "South Carolina", 
            "SD": "South Dakota", "TN": "Tennessee", "TX": "Texas", "UT": "Utah", 
            "VT": "Vermont", "VA": "Virginia", "WA": "Washington", "WV": "West Virginia", 
            "WI": "Wisconsin", "WY": "Wyoming", "DC": "District of Columbia"
        }
        
        # Mapping from two-letter state codes to numeric state codes for API
        self.state_code_mapping = {
            "AL": "01", "AK": "02", "AZ": "04", "AR": "05", 
            "CA": "06", "CO": "08", "CT": "09", "DE": "10", 
            "FL": "12", "GA": "13", "HI": "15", "ID": "16", 
            "IL": "17", "IN": "18", "IA": "19", "KS": "20", 
            "KY": "21", "LA": "22", "ME": "23", "MD": "24", 
            "MA": "25", "MI": "26", "MN": "27", "MS": "28", 
            "MO": "29", "MT": "30", "NE": "31", "NV": "32", 
            "NH": "33", "NJ": "34", "NM": "35", "NY": "36", 
            "NC": "37", "ND": "38", "OH": "39", "OK": "40", 
            "OR": "41", "PA": "42", "RI": "44", "SC": "45", 
            "SD": "46", "TN": "47", "TX": "48", "UT": "49", 
            "VT": "50", "VA": "51", "WA": "53", "WV": "54", 
            "WI": "55", "WY": "56", "DC": "11"
        }
        
        # AQI categories with their corresponding colors - using only valid Folium icon colors
        self.aqi_categories = {
            "Good": "green",
            "Moderate": "orange",
            "Unhealthy for Sensitive Groups": "orange",
            "Unhealthy": "red",
            "Very Unhealthy": "purple",
            "Hazardous": "darkred"
        }
        
        # Color mapping for the legend (using original colors for display)
        self.aqi_legend_colors = {
            "Good": "#00e400",  # Green
            "Moderate": "#ffff00",  # Yellow
            "Unhealthy for Sensitive Groups": "#ff7e00",  # Orange
            "Unhealthy": "#ff0000",  # Red
            "Very Unhealthy": "#99004c",  # Purple
            "Hazardous": "#7e0023"  # Maroon
        }

        # Cache for storing monitored data
        self.all_monitors_cache = {}
        self.all_aqi_data_cache = {}
        
        # Load data on initialization
        print("Initializing and loading all monitors data...")
        self.load_all_monitors()
        print("Loading AQI data...")
        self.load_all_aqi_data()
        print("Initialization complete.")
    
    def load_all_monitors(self):
        """Load monitors data for all states"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            for state_code in self.states.keys():
                self.all_monitors_cache[state_code] = self.mock_get_monitors(state_code)
            return
        
        # With API credentials, load data for all states using multithreading
        with ThreadPoolExecutor(max_workers=5) as executor:
            future_to_state = {executor.submit(self.get_monitors, state_code): state_code for state_code in self.states.keys()}
            for future in as_completed(future_to_state):
                state_code = future_to_state[future]
                try:
                    result = future.result()
                    self.all_monitors_cache[state_code] = result
                    print(f"Loaded {len(result)} monitors for {state_code}")
                except Exception as e:
                    print(f"Error loading monitors for {state_code}: {e}")
                    # Fall back to mock data
                    self.all_monitors_cache[state_code] = self.mock_get_monitors(state_code)
                
                # Sleep briefly to avoid overwhelming the API
                time.sleep(0.5)
    
    def load_all_aqi_data(self):
        """Load AQI data for all states"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            for state_code in self.states.keys():
                self.all_aqi_data_cache[state_code] = self._generate_mock_aqi_data(state_code)
            return
        
        # With API credentials, load data for all states using multithreading
        with ThreadPoolExecutor(max_workers=5) as executor:
            future_to_state = {executor.submit(self.get_latest_aqi, state_code): state_code for state_code in self.states.keys()}
            for future in as_completed(future_to_state):
                state_code = future_to_state[future]
                try:
                    result = future.result()
                    self.all_aqi_data_cache[state_code] = result
                    print(f"Loaded {len(result)} AQI readings for {state_code}")
                except Exception as e:
                    print(f"Error loading AQI data for {state_code}: {e}")
                    # Fall back to mock data
                    self.all_aqi_data_cache[state_code] = self._generate_mock_aqi_data(state_code)
                
                # Sleep briefly to avoid overwhelming the API
                time.sleep(0.5)
    
    def _generate_mock_aqi_data(self, state_code):
        """Generate mock AQI data for a state"""
        import random
        from datetime import datetime, timedelta
        
        aqi_data = []
        
        # Get numeric state code
        numeric_state_code = self.state_code_mapping.get(state_code, "01")
        
        # Make mock data for our standard states
        if state_code in ["CA", "NY", "TX"]:
            # Generate data for the most recent 7 days
            for days_ago in range(7):
                # Generate date
                date = (datetime.now() - timedelta(days=days_ago)).strftime("%Y-%m-%d")
                
                # Get monitors for this state from cache
                monitors = self.all_monitors_cache.get(state_code, self.mock_get_monitors(state_code))
                
                # Generate AQI data for each monitor
                for monitor in monitors:
                    county_code = monitor.get("county_code", "001")
                    site_number = monitor.get("site_number", "0001")
                    parameter_code = monitor.get("parameter_code", "88101")
                    parameter_name = monitor.get("parameter_name", "PM2.5 - Local Conditions")
                    
                    # Generate random AQI value (between 0 and 300)
                    aqi_value = random.randint(0, 300)
                    
                    aqi_data.append({
                        "state_code": numeric_state_code,
                        "county_code": county_code,
                        "site_number": site_number,
                        "parameter_code": parameter_code,
                        "parameter_name": parameter_name,
                        "date_local": date,
                        "aqi": aqi_value
                    })
        else:
            # For other states, generate minimal data
            # Current date
            date = datetime.now().strftime("%Y-%m-%d")
            
            # Make 2 fake monitors with random AQI values
            aqi_data.append({
                "state_code": numeric_state_code,
                "county_code": "001",
                "site_number": "0001",
                "parameter_code": "88101",
                "parameter_name": "PM2.5 - Local Conditions",
                "date_local": date,
                "aqi": random.randint(0, 300)
            })
            
            aqi_data.append({
                "state_code": numeric_state_code,
                "county_code": "001",
                "site_number": "0002",
                "parameter_code": "44201",
                "parameter_name": "Ozone",
                "date_local": date,
                "aqi": random.randint(0, 300)
            })
        
        return aqi_data
    
    def get_monitors(self, state_code, county_code=None, parameter_code=None):
        """Fetch monitoring stations for a given state and optional county"""
        # Check cache first
        if state_code in self.all_monitors_cache:
            monitors = self.all_monitors_cache[state_code]
            
            # Filter by county if provided
            if county_code:
                monitors = [m for m in monitors if m.get("county_code") == county_code]
                
            # Filter by parameter if provided
            if parameter_code:
                monitors = [m for m in monitors if m.get("parameter_code") == parameter_code]
                
            return monitors
        
        # If not in cache, fetch from API
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return self.mock_get_monitors(state_code, county_code, parameter_code)
        
        # Convert state code to numeric format for API
        api_state_code = state_code
        if len(state_code) == 2 and state_code in self.state_code_mapping:
            api_state_code = self.state_code_mapping[state_code]
            
        # API endpoint for monitoring sites
        endpoint = f"{EPA_AQS_API_BASE_URL}/monitors/byState"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "state": api_state_code,
            "bdate": "20240101",  # Beginning date (YYYYMMDD)
            "edate": "20240414",  # End date (YYYYMMDD)
        }
        
        if county_code:
            params["county"] = county_code
            
        if parameter_code:
            params["param"] = parameter_code
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure
            if isinstance(data, dict):
                if "Data" in data and isinstance(data["Data"], list):
                    return data["Data"]
                elif "Header" in data and isinstance(data["Header"], list):
                    if len(data["Header"]) > 0 and data["Header"][0].get("status") == "Success":
                        return data.get("Data", [])
                    else:
                        print(f"Header does not contain success status: {data['Header']}")
                # Special case - return mock data if we can't parse the API response
                print(f"Using mock data instead of API response for state {state_code}")
                return self.mock_get_monitors(state_code, county_code, parameter_code)
            else:
                print(f"Unexpected response format for monitors: {type(data)}")
                return self.mock_get_monitors(state_code, county_code, parameter_code)
        except Exception as e:
            print(f"Error fetching monitors: {e}")
            return self.mock_get_monitors(state_code, county_code, parameter_code)
    
    def get_counties(self, state_code):
        """Fetch counties for a given state"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return self.mock_get_counties(state_code)
        
        # Convert state code to numeric format for API
        api_state_code = state_code
        if len(state_code) == 2 and state_code in self.state_code_mapping:
            api_state_code = self.state_code_mapping[state_code]
        
        endpoint = f"{EPA_AQS_API_BASE_URL}/list/countiesByState"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "state": api_state_code
        }
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure we observed
            counties = []
            if isinstance(data, dict) and "Data" in data and isinstance(data["Data"], list):
                counties = data["Data"]
            
            # Format as "code: name" for dropdown
            result = []
            for c in counties:
                code = c.get("code")
                value = c.get("value_represented")
                if code and value:
                    result.append(f"{code}: {value}")
            
            return result
        except Exception as e:
            print(f"Error fetching counties: {e}")
            return []
    
    def get_parameters(self):
        """Fetch available parameter codes (pollutants)"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return self.mock_get_parameters()
        
        endpoint = f"{EPA_AQS_API_BASE_URL}/list/parametersByClass"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "pc": "CRITERIA"  # Filter to criteria pollutants
        }
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure we observed
            parameters = []
            if isinstance(data, dict) and "Data" in data and isinstance(data["Data"], list):
                parameters = data["Data"]
            
            # Format as "code: name" for dropdown
            result = []
            for p in parameters:
                code = p.get("code")
                value = p.get("value_represented")
                if not code:
                    code = p.get("parameter_code")
                if not value:
                    value = p.get("parameter_name")
                
                if code and value:
                    result.append(f"{code}: {value}")
            
            return result
        except Exception as e:
            print(f"Error fetching parameters: {e}")
            return []
    
    def get_latest_aqi(self, state_code, county_code=None, parameter_code=None):
        """Fetch the latest AQI data for monitors"""
        # Check cache first
        if state_code in self.all_aqi_data_cache:
            aqi_data = self.all_aqi_data_cache[state_code]
            
            # Filter by county if provided
            if county_code:
                aqi_data = [item for item in aqi_data if item.get('county_code') == county_code]
                
            # Filter by parameter if provided
            if parameter_code:
                aqi_data = [item for item in aqi_data if item.get('parameter_code') == parameter_code]
                
            return aqi_data
        
        # If not in cache, fetch from API
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return self._generate_mock_aqi_data(state_code)
        
        # Convert state code to numeric format for API
        api_state_code = state_code
        if len(state_code) == 2 and state_code in self.state_code_mapping:
            api_state_code = self.state_code_mapping[state_code]
        
        endpoint = f"{EPA_AQS_API_BASE_URL}/dailyData/byState"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "state": api_state_code,
            "bdate": "20240314",  # Beginning date (YYYYMMDD) - last 30 days
            "edate": "20240414",  # End date (YYYYMMDD) - current date
        }
        
        # The county parameter might not be supported here either
        # We'll filter results by county after getting them
            
        if parameter_code:
            params["param"] = parameter_code
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure we observed
            aqi_data = []
            if isinstance(data, dict) and "Data" in data and isinstance(data["Data"], list):
                aqi_data = data["Data"]
            
            # Filter by county if provided
            if county_code and aqi_data:
                aqi_data = [item for item in aqi_data if item.get('county_code') == county_code]
                
            return aqi_data
        except Exception as e:
            print(f"Error fetching AQI data: {e}")
            return []
    
    def create_map(self, focus_state=None, county_code=None, parameter_code=None):
        """Create a map with air quality monitoring stations for all states"""
        # Get all monitors - either focused on a state or all states
        all_monitors = []
        
        if focus_state:
            # Get monitors just for the focused state
            monitors = self.get_monitors(focus_state, county_code, parameter_code)
            if monitors:
                all_monitors.extend(monitors)
        else:
            # Get all monitors from all states
            for state_code in self.states.keys():
                monitors = self.get_monitors(state_code)
                if monitors:
                    all_monitors.extend(monitors)
        
        if not all_monitors:
            return {"map": "No monitoring stations found for the selected criteria.", "legend": "", "data": None}
        
        # Convert to DataFrame for easier manipulation
        df = pd.DataFrame(all_monitors)
        
        # Create a map centered on the continental US
        if focus_state:
            # Center on the focused state
            center_lat = df["latitude"].mean()
            center_lon = df["longitude"].mean()
            zoom_start = 7
        else:
            # Center on continental US
            center_lat = 39.8283
            center_lon = -98.5795
            zoom_start = 4
        
        # Create a map with a specific width and height
        m = folium.Map(location=[center_lat, center_lon], zoom_start=zoom_start, width='100%', height=700)
        
        # Add a marker cluster
        marker_cluster = MarkerCluster().add_to(m)
        
        # Get all AQI data
        all_aqi_data = []
        aqi_data_by_site = {}
        
        # Process AQI data for each state
        for state_code in self.states.keys():
            # Skip states we don't need if focusing on a specific state
            if focus_state and state_code != focus_state:
                continue
                
            # Get AQI data for this state
            state_aqi_data = self.get_latest_aqi(state_code, county_code, parameter_code)
            
            if state_aqi_data:
                all_aqi_data.extend(state_aqi_data)
                
                # Create a lookup dictionary by site ID
                for item in state_aqi_data:
                    site_id = f"{item['state_code']}-{item['county_code']}-{item['site_number']}"
                    if site_id not in aqi_data_by_site:
                        aqi_data_by_site[site_id] = []
                    aqi_data_by_site[site_id].append(item)
        
        # Add markers for each monitoring station
        for _, row in df.iterrows():
            site_id = f"{row['state_code']}-{row['county_code']}-{row['site_number']}"
            
            # Default marker color is blue
            color = "blue"
            
            # Get AQI data for this station if available
            station_aqi_data = aqi_data_by_site.get(site_id, [])
            latest_aqi = None
            aqi_category = None
            
            # Create a table of pollutant readings if available
            aqi_readings_html = ""
            
            if station_aqi_data:
                # Sort by date (most recent first)
                station_aqi_data.sort(key=lambda x: x.get('date_local', ''), reverse=True)
                
                # Get latest AQI for marker color
                if station_aqi_data[0].get('aqi'):
                    latest_aqi = station_aqi_data[0].get('aqi')
                    aqi_category = self.get_aqi_category(latest_aqi)
                    color = self.aqi_categories.get(aqi_category, "blue")
                
                # Create a table of readings
                aqi_readings_html = """
                <h4>Recent Air Quality Readings</h4>
                <table style="width:100%; border-collapse: collapse; margin-top: 10px;">
                <tr style="background-color: #f2f2f2;">
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Date</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Pollutant</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">AQI</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Category</th>
                </tr>
                """
                
                # Add up to 10 most recent readings
                for i, reading in enumerate(station_aqi_data[:10]):
                    date = reading.get('date_local', 'N/A')
                    pollutant = reading.get('parameter_name', 'N/A')
                    aqi_value = reading.get('aqi', 'N/A')
                    category = self.get_aqi_category(aqi_value) if aqi_value and aqi_value != 'N/A' else 'N/A'
                    
                    row_style = ' style="background-color: #f2f2f2;"' if i % 2 == 0 else ''
                    aqi_readings_html += f"""
                    <tr{row_style}>
                        <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{date}</td>
                        <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{pollutant}</td>
                        <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{aqi_value}</td>
                        <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{category}</td>
                    </tr>
                    """
                
                aqi_readings_html += "</table>"
                
                # If there are more readings than what we showed
                if len(station_aqi_data) > 10:
                    aqi_readings_html += f"<p><em>Showing 10 of {len(station_aqi_data)} readings</em></p>"
            
            # Create popup content with detailed information
            popup_content = f"""
            <div style="min-width: 300px;">
                <h3>{row.get('local_site_name', 'Monitoring Station')}</h3>
                <p><strong>Site ID:</strong> {site_id}</p>
                <p><strong>Address:</strong> {row.get('address', 'N/A')}</p>
                <p><strong>City:</strong> {row.get('city_name', 'N/A')}</p>
                <p><strong>County:</strong> {row.get('county_name', 'N/A')}</p>
                <p><strong>State:</strong> {row.get('state_name', self.states.get(row.get('state_code', ''), 'Unknown'))}</p>
                <p><strong>Parameter:</strong> {row.get('parameter_name', 'N/A')}</p>
                <p><strong>Coordinates:</strong> {row.get('latitude', 'N/A')}, {row.get('longitude', 'N/A')}</p>
                {aqi_readings_html}
            </div>
            """
            
            # Create a larger popup for detailed data
            popup = folium.Popup(popup_content, max_width=500)
            
            # Add marker to cluster
            folium.Marker(
                location=[row["latitude"], row["longitude"]],
                popup=popup,
                icon=folium.Icon(color=color, icon="cloud"),
            ).add_to(marker_cluster)
        
        # Return map HTML, legend HTML, and data for the separate panel
        map_html = m._repr_html_()
        legend_html = self.create_legend_html()
        
        return {
            "map": map_html, 
            "legend": legend_html,
            "data": all_aqi_data
        }
    
    def create_legend_html(self):
        """Create the HTML for the AQI legend"""
        legend_html = """
        <div style="padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: white; margin-top: 10px;">
        <h4 style="margin-top: 0;">AQI Categories</h4>
        <div style="display: grid; grid-template-columns: auto 1fr; grid-gap: 5px; align-items: center;">
        """
        
        for category, color in self.aqi_legend_colors.items():
            legend_html += f'<span style="background-color: {color}; width: 20px; height: 20px; display: inline-block;"></span>'
            legend_html += f'<span>{category}</span>'
        
        legend_html += """
        </div>
        </div>
        """
        return legend_html
    
    def get_aqi_category(self, aqi_value):
        """Determine AQI category based on value"""
        try:
            aqi = int(aqi_value)
            if aqi <= 50:
                return "Good"
            elif aqi <= 100:
                return "Moderate"
            elif aqi <= 150:
                return "Unhealthy for Sensitive Groups"
            elif aqi <= 200:
                return "Unhealthy"
            elif aqi <= 300:
                return "Very Unhealthy"
            else:
                return "Hazardous"
        except (ValueError, TypeError):
            return "Unknown"
    
    def format_air_quality_data_table(self, aqi_data, state_filter=None, county_filter=None):
        """Format air quality data as an HTML table for display"""
        if not aqi_data or len(aqi_data) == 0:
            return "<p>No air quality data available for the selected criteria.</p>"
        
        # Filter by state if provided
        if state_filter:
            # Convert state code if needed
            if len(state_filter) == 2:
                state_filter = self.state_code_mapping.get(state_filter, state_filter)
            aqi_data = [item for item in aqi_data if item.get('state_code') == state_filter]
        
        # Filter by county if provided
        if county_filter:
            aqi_data = [item for item in aqi_data if item.get('county_code') == county_filter]
        
        if not aqi_data or len(aqi_data) == 0:
            return "<p>No air quality data available for the selected criteria.</p>"
        
        # Sort by date (most recent first) and then by AQI value (highest first)
        sorted_data = sorted(aqi_data, 
                            key=lambda x: (x.get('date_local', ''), -int(x.get('aqi', 0)) if x.get('aqi') and str(x.get('aqi')).isdigit() else 0), 
                            reverse=True)
        
        # Group by location to show the latest readings for each site
        site_data = {}
        for item in sorted_data:
            site_id = f"{item.get('state_code', '')}-{item.get('county_code', '')}-{item.get('site_number', '')}"
            param = item.get('parameter_code', '')
            key = f"{site_id}-{param}"
            
            if key not in site_data:
                site_data[key] = item
        
        # Create HTML table
        html = """
        <div style="max-height: 500px; overflow-y: auto;">
            <h3>Latest Air Quality Readings</h3>
            <table style="width:100%; border-collapse: collapse;">
                <tr style="background-color: #f2f2f2; position: sticky; top: 0;">
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Date</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">State</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">County</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Location</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Pollutant</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">AQI</th>
                    <th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Category</th>
                </tr>
        """
        
        # Add rows for each site's latest readings
        for i, item in enumerate(site_data.values()):
            date = item.get('date_local', 'N/A')
            
            # Get state and county names
            state_code = item.get('state_code', 'N/A')
            state_name = 'N/A'
            # Reverse lookup state name
            for code, name in self.state_code_mapping.items():
                if name == state_code:
                    state_name = self.states.get(code, 'Unknown')
                    break
            
            county_code = item.get('county_code', 'N/A')
            site_number = item.get('site_number', 'N/A')
            location = f"Site {site_number}"
            
            pollutant = item.get('parameter_name', 'N/A')
            aqi_value = item.get('aqi', 'N/A')
            category = self.get_aqi_category(aqi_value)
            
            # Get appropriate color for the AQI category
            category_color = self.aqi_legend_colors.get(category, "#cccccc")
            
            row_style = ' style="background-color: #f9f9f9;"' if i % 2 == 0 else ''
            html += f"""
            <tr{row_style}>
                <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{date}</td>
                <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{state_name}</td>
                <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{county_code}</td>
                <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{location}</td>
                <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{pollutant}</td>
                <td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{aqi_value}</td>
                <td style="padding: 8px; text-align: left; border: 1px solid #ddd; background-color: {category_color};">{category}</td>
            </tr>
            """
        
        html += """
            </table>
        </div>
        """
        
        return html
    
    def mock_get_counties(self, state_code):
        """Return mock county data for the specified state"""
        # Sample county data for demo
        mock_counties = {
            "CA": [
                {"code": "037", "value": "Los Angeles"},
                {"code": "067", "value": "Sacramento"},
                {"code": "073", "value": "San Diego"},
                {"code": "075", "value": "San Francisco"}
            ],
            "NY": [
                {"code": "061", "value": "New York"},
                {"code": "047", "value": "Kings (Brooklyn)"},
                {"code": "081", "value": "Queens"},
                {"code": "005", "value": "Bronx"}
            ],
            "TX": [
                {"code": "201", "value": "Harris (Houston)"},
                {"code": "113", "value": "Dallas"},
                {"code": "029", "value": "Bexar (San Antonio)"},
                {"code": "453", "value": "Travis (Austin)"}
            ]
        }
        
        if state_code in mock_counties:
            counties = mock_counties[state_code]
            return [f"{c['code']}: {c['value']}" for c in counties]
        else:
            # Return generic counties for other states
            return [
                "001: County 1",
                "002: County 2",
                "003: County 3",
                "004: County 4"
            ]
    
    def mock_get_parameters(self):
        """Return mock parameter data"""
        # Sample parameters for demo
        mock_parameters = [
            {"code": "88101", "value_represented": "PM2.5 - Local Conditions"},
            {"code": "44201", "value_represented": "Ozone"},
            {"code": "42401", "value_represented": "Sulfur dioxide"},
            {"code": "42101", "value_represented": "Carbon monoxide"},
            {"code": "42602", "value_represented": "Nitrogen dioxide"},
            {"code": "81102", "value_represented": "PM10 - Local Conditions"}
        ]
        
        return [f"{p['code']}: {p['value_represented']}" for p in mock_parameters]
    
    def mock_get_monitors(self, state_code, county_code=None, parameter_code=None):
        """Mock function to return sample data for development"""
        # Get state code in proper format
        if len(state_code) == 2:
            # Convert 2-letter state code to numeric format for mock data
            state_code_mapping = {
                "CA": "06",
                "NY": "36",
                "TX": "48"
            }
            numeric_state_code = state_code_mapping.get(state_code, "01")  # Default to "01" if not found
        else:
            numeric_state_code = state_code
        
        # Sample data for California
        if state_code == "CA" or numeric_state_code == "06":
            monitors = [
                {
                    "state_code": "06",
                    "county_code": "037",
                    "site_number": "0001",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 34.0667,
                    "longitude": -118.2275,
                    "local_site_name": "Los Angeles - North Main Street",
                    "address": "1630 North Main Street",
                    "city_name": "Los Angeles",
                    "cbsa_name": "Los Angeles-Long Beach-Anaheim",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "06",
                    "county_code": "037",
                    "site_number": "0002",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 34.0667,
                    "longitude": -118.2275,
                    "local_site_name": "Los Angeles - North Main Street",
                    "address": "1630 North Main Street",
                    "city_name": "Los Angeles",
                    "cbsa_name": "Los Angeles-Long Beach-Anaheim",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "06",
                    "county_code": "067",
                    "site_number": "0010",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 38.5661,
                    "longitude": -121.4926,
                    "local_site_name": "Sacramento - T Street",
                    "address": "1309 T Street",
                    "city_name": "Sacramento",
                    "cbsa_name": "Sacramento-Roseville",
                    "date_established": "1999-03-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "06",
                    "county_code": "073",
                    "site_number": "0005",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 32.7333,
                    "longitude": -117.1500,
                    "local_site_name": "San Diego - Beardsley Street",
                    "address": "1110 Beardsley Street",
                    "city_name": "San Diego",
                    "cbsa_name": "San Diego-Carlsbad",
                    "date_established": "1999-04-15",
                    "last_sample_date": "2024-04-10"
                }
            ]
        # Sample data for New York
        elif state_code == "NY" or numeric_state_code == "36":
            monitors = [
                {
                    "state_code": "36",
                    "county_code": "061",
                    "site_number": "0010",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 40.7159,
                    "longitude": -73.9876,
                    "local_site_name": "New York - PS 59",
                    "address": "228 East 57th Street",
                    "city_name": "New York",
                    "cbsa_name": "New York-Newark-Jersey City",
                    "date_established": "1999-07-15",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "36",
                    "county_code": "061",
                    "site_number": "0079",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 40.8160,
                    "longitude": -73.9510,
                    "local_site_name": "New York - IS 52",
                    "address": "681 Kelly Street",
                    "city_name": "Bronx",
                    "cbsa_name": "New York-Newark-Jersey City",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                }
            ]
        # Sample data for Texas
        elif state_code == "TX" or numeric_state_code == "48":
            monitors = [
                {
                    "state_code": "48",
                    "county_code": "201",
                    "site_number": "0024",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 29.7349,
                    "longitude": -95.3063,
                    "local_site_name": "Houston - Clinton Drive",
                    "address": "9525 Clinton Drive",
                    "city_name": "Houston",
                    "cbsa_name": "Houston-The Woodlands-Sugar Land",
                    "date_established": "1997-09-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "48",
                    "county_code": "113",
                    "site_number": "0050",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 32.8198,
                    "longitude": -96.8602,
                    "local_site_name": "Dallas - Hinton Street",
                    "address": "1415 Hinton Street",
                    "city_name": "Dallas",
                    "cbsa_name": "Dallas-Fort Worth-Arlington",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                }
            ]
        else:
            # Default data for other states - generate some random monitors
            monitors = [
                {
                    "state_code": state_code,
                    "county_code": "001",
                    "site_number": "0001",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 40.0 + float(ord(state_code[0]) % 10) / 10,
                    "longitude": -90.0 - float(ord(state_code[0]) % 10) / 10,
                    "local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 1",
                    "address": "123 Main Street",
                    "city_name": "City 1",
                    "cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
                    "date_established": "2000-01-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": state_code,
                    "county_code": "002",
                    "site_number": "0002",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 40.5 + float(ord(state_code[0]) % 10) / 10,
                    "longitude": -90.5 - float(ord(state_code[0]) % 10) / 10,
                    "local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 2",
                    "address": "456 Oak Street",
                    "city_name": "City 2",
                    "cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
                    "date_established": "2000-01-01",
                    "last_sample_date": "2024-04-10"
                }
            ]
        
        # Filter by county if provided
        if county_code:
            monitors = [m for m in monitors if m["county_code"] == county_code]
            
        # Filter by parameter if provided
        if parameter_code:
            monitors = [m for m in monitors if m["parameter_code"] == parameter_code]
            
        return monitors

# Create the new UI with the nationwide map
def create_air_quality_map_ui():
    """Create the Gradio interface for the Air Quality Map application with nationwide data preloaded"""
    app = AirQualityApp()
    
    def update_counties(state_code):
        """Callback to update counties dropdown when state changes"""
        counties = app.get_counties(state_code)
        return gr.Dropdown(choices=counties)
    
    def show_map_and_data(state=None, county=None, parameter=None):
        """Callback to generate and display both the map and the air quality data"""
        # Extract code from county string if provided
        county_code = None
        if county and ":" in county:
            county_code = county.split(":")[0].strip()
            
        # Extract code from parameter string if provided
        parameter_code = None
        if parameter and ":" in parameter:
            parameter_code = parameter.split(":")[0].strip()
            
        # Generate the map and get data - focus on state if selected
        result = app.create_map(state, county_code, parameter_code)
        
        if isinstance(result, dict):
            # Process map HTML
            map_html = f"""
            <div>
                {result["map"]}
                {result["legend"]}
            </div>
            """
            
            # Process air quality data for the separate panel
            if result["data"]:
                data_html = app.format_air_quality_data_table(result["data"], state, county_code)
            else:
                data_html = "<p>No air quality data available for the selected criteria.</p>"
                
            return map_html, data_html
        else:
            # Return error message or whatever was returned
            error_message = result if isinstance(result, str) else "An error occurred"
            return error_message, "<p>No data available</p>"
    
    # Create the UI
    with gr.Blocks(title="Air Quality Monitoring Stations") as interface:
        gr.Markdown("# NOAA Air Quality Monitoring Stations Map")
        gr.Markdown("""
        This application displays air quality monitoring stations across the United States and shows current air quality readings.
        
        **Note:** To use the actual EPA AQS API, you need to register for an API key and set 
        `EPA_AQS_EMAIL` and `EPA_AQS_API_KEY` environment variables in your Hugging Face Space.
        
        For demonstration without an API key, the app shows sample data with more detailed information for California (CA), New York (NY), and Texas (TX).
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # State dropdown with empty default (all states)
                state_dropdown = gr.Dropdown(
                    choices=[""] + list(app.states.keys()),
                    label="Filter by State (Optional)",
                    value=""
                )
                
                # County dropdown (initially empty)
                county_dropdown = gr.Dropdown(
                    choices=[],
                    label="Filter by County (Optional)",
                    allow_custom_value=True
                )
                
                # Parameter dropdown (pollutant type)
                parameter_dropdown = gr.Dropdown(
                    choices=app.mock_get_parameters(),
                    label="Filter by Pollutant (Optional)",
                    allow_custom_value=True
                )
                
                # Button to update filters
                map_button = gr.Button("Update Filters")
        
        # Create two tabs for the map and data
        with gr.Tabs() as tabs:
            with gr.TabItem("Map"):
                # HTML component to display the map
                map_html = gr.HTML(label="Air Quality Monitoring Stations Map")
            
            with gr.TabItem("Air Quality Data"):
                # HTML component to display the air quality data
                data_html = gr.HTML(label="Air Quality Readings")
        
        # Set up event handlers
        state_dropdown.change(
            fn=update_counties,
            inputs=state_dropdown,
            outputs=county_dropdown
        )
        
        map_button.click(
            fn=show_map_and_data,
            inputs=[state_dropdown, county_dropdown, parameter_dropdown],
            outputs=[map_html, data_html]
        )
        
        # Load initial map when the app starts
        interface.load(
            fn=show_map_and_data,
            inputs=None,
            outputs=[map_html, data_html]
        )
    
    return interface

# Create and launch the app
if __name__ == "__main__":
    air_quality_map_ui = create_air_quality_map_ui()
    air_quality_map_ui.launch()