File size: 797 Bytes
919da6e
223671b
96eb944
 
919da6e
96eb944
4a02bf5
96eb944
 
 
223671b
96eb944
 
 
 
 
 
 
 
b86c944
853b236
9cde633
b2558f7
853b236
b2558f7
96eb944
03e7e0a
919da6e
e8ba582
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
import numpy as np
import tensorflow as tf
import PIL

 
def normalize_img(img):
    img = tf.cast(img, dtype=tf.float32)
    # Map values in the range [-1, 1]
    return (img / 127.5) - 1.0

def predict_and_save(img, generator_model):
    img = normalize_img(img)
    prediction = generator_model(img, training=False)[0].numpy() 
    prediction = (prediction * 127.5 + 127.5).astype(np.uint8)  
    im = PIL.Image.fromarray(prediction)
    return im
    
def run(image_path):
    model = tf.keras.models.load_model('pretrained')  
    print("Model loaded")
    img_array = tf.expand_dims(image_path, 0)
    im = predict_and_save(img_array, model)
    print("Prediction Done")
    return im

iface = gr.Interface(run, gr.inputs.Image(shape=(256, 256)), "image")

iface.launch()