File size: 27,560 Bytes
b763b36
f6e75bb
 
 
 
 
 
 
 
 
 
 
 
92ce950
f6e75bb
 
 
b763b36
f6e75bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd8158
 
 
6bd84a1
bbc2907
 
38665fe
 
e0aefcb
bbc2907
92ce950
f6e75bb
 
 
 
bbc2907
 
f6e75bb
 
e0aefcb
 
bbc2907
 
52b3524
f6e75bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b3524
f6e75bb
 
 
 
 
 
 
 
 
 
 
 
 
 
e140e6c
f6e75bb
 
 
 
414f345
 
f6e75bb
 
 
 
92ce950
f6e75bb
 
 
 
 
 
 
bbc2907
f6e75bb
 
 
 
 
 
 
 
 
 
92ce950
f6e75bb
 
 
 
92ce950
 
 
f6e75bb
 
 
 
 
0e7c662
f6e75bb
 
 
 
 
 
 
52b3524
 
 
f6e75bb
 
 
 
414f345
f6e75bb
52b3524
bbc2907
 
 
 
 
 
f6e75bb
 
414f345
52b3524
 
 
 
 
 
 
 
 
 
 
f6e75bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ce950
289a4db
f6e75bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52b3524
f6e75bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ce950
f6e75bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
import csv
import time
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import piexif
import zipfile
import base64

# Directory setup
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
FLIGHT_LOG_DIR = "flight_logs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
os.chmod(FLIGHT_LOG_DIR, 0o777)

# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1
MAX_IMAGES = 500

# Model setup
def safe_load_yolo_model(path):
    torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
    return YOLO(path)

model_paths = {
    'YOLOv11': './data/yolo11n.pt',
    'Crack & Pothole Detector': './data/pothole.pt',
    'Toll gates': './data/tollgate.pt',
    'Railway Bridges': './data/bridges.pt'
}

models = {name: safe_load_yolo_model(path).to("cuda" if torch.cuda.is_available() else "cpu") for name, path in model_paths.items()}
for name, model in models.items():
    if torch.cuda.is_available():
        model.half()

model_colors = {
    'YOLOv11': (0, 255, 0),  # Green
    'Crack & Pothole Detector': (255, 0, 0),  # Red
    'Toll gates': (0, 0, 255),  # Blue
    'Railway Bridges': (0, 255, 255)  # Yellow
}

# Helper functions
def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path: str) -> str:
    zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip")
    try:
        with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_STORED) as zipf:
            if os.path.exists(report_path):
                zipf.write(report_path, os.path.basename(report_path))
            if os.path.exists(video_path):
                zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path)))
            if os.path.exists(chart_path):
                zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path)))
            if os.path.exists(map_path):
                zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path)))
            for file in detected_issues:
                if os.path.exists(file):
                    zipf.write(file, os.path.join("captured_frames", os.path.basename(file)))
            for root, _, files in os.walk(FLIGHT_LOG_DIR):
                for file in files:
                    file_path = os.path.join(root, file)
                    zipf.write(file_path, os.path.join("flight_logs", file))
        log_entries.append(f"Created ZIP: {zip_path}")
        return zip_path
    except Exception as e:
        log_entries.append(f"Error: Failed to create ZIP: {str(e)}")
        return ""

def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
    map_path = os.path.join(OUTPUT_DIR, f"map_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
    plt.figure(figsize=(4, 4))
    plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
    plt.title("Issue Locations Map")
    plt.xlabel("Longitude")
    plt.ylabel("Latitude")
    plt.legend()
    plt.savefig(map_path)
    plt.close()
    return map_path

def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
    try:
        lat = abs(gps_coord[0])
        lon = abs(gps_coord[1])
        lat_ref = "N" if gps_coord[0] >= 0 else "S"
        lon_ref = "E" if gps_coord[1] >= 0 else "W"
        exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
        exif_dict["GPS"] = {
            piexif.GPSIFD.GPSLatitudeRef: lat_ref,
            piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
            piexif.GPSIFD.GPSLongitudeRef: lon_ref,
            piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
        }
        piexif.insert(piexif.dump(exif_dict), image_path)
        return True
    except Exception as e:
        log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
        return False

def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
    log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
    try:
        with open(log_path, 'w', newline='') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
            writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
        return log_path
    except Exception as e:
        log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
        return ""

def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
    height, width, _ = frame.shape
    frame_resolution = width * height
    if frame_resolution < 2_073_600:
        log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 2MP")
        return False
    if frame_resolution < input_resolution:
        log_entries.append(f"Frame {frame_count}: Output resolution below input")
        return False
    return True

def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
    counts = Counter([(det["label"], det["model"]) for det in detections])
    return {
        "items": [{"type": k[0], "model": k[1], "count": v} for k, v in counts.items()],
        "total_detections": len(detections),
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }

def generate_line_chart() -> Optional[str]:
    if not detected_counts:
        return None
    plt.figure(figsize=(4, 2))
    plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
    plt.title("Detections Over Time")
    plt.xlabel("Frame")
    plt.ylabel("Count")
    plt.grid(True)
    plt.tight_layout()
    chart_path = os.path.join(OUTPUT_DIR, f"chart_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
    plt.savefig(chart_path)
    plt.close()
    return chart_path

def generate_report(
    metrics: Dict[str, Any],
    detected_issues: List[str],
    gps_coordinates: List[List[float]],
    all_detections: List[Dict[str, Any]],
    frame_count: int,
    total_time: float,
    output_frames: int,
    output_fps: float,
    output_duration: float,
    detection_frame_count: int,
    chart_path: str,
    map_path: str,
    frame_times: List[float],
    resize_times: List[float],
    inference_times: List[float],
    io_times: List[float]
) -> str:
    log_entries.append("Generating report...")
    report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.html")
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    report_content = [
        "<!DOCTYPE html>",
        "<html lang='en'>",
        "<head>",
        "<meta charset='UTF-8'>",
        "<title>NHAI Drone Survey Analysis Report</title>",
        "<style>",
        "body { font-family: Arial, sans-serif; margin: 40px; }",
        "h1, h2, h3 { color: #333; }",
        "ul { margin-left: 20px; }",
        "table { border-collapse: collapse; width: 100%; margin: 10px 0; }",
        "th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }",
        "th { background-color: #f2f2f2; }",
        "img { max-width: 600px; height: auto; margin: 10px 0; }",
        "p.caption { font-weight: bold; margin: 5px 0; }",
        "</style>",
        "</head>",
        "<body>",
        "<h1>NHAI Drone Survey Analysis Report</h1>",
        "<h2>Project Details</h2>",
        "<ul>",
        "<li><strong>Project Name:</strong> NH-44 Delhi-Hyderabad Section (Package XYZ)</li>",
        "<li><strong>Highway Section:</strong> Km 100 to Km 150</li>",
        "<li><strong>State:</strong> Telangana</li>",
        "<li><strong>Region:</strong> South</li>",
        f"<li><strong>Survey Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
        "<li><strong>Drone Service Provider:</strong> ABC Drone Services Pvt. Ltd.</li>",
        "<li><strong>Technology Service Provider:</strong> XYZ AI Analytics Ltd.</li>",
        f"<li><strong>Work Order Reference:</strong> Data Lake WO-{datetime.now().strftime('%Y%m%d')}-XYZ</li>",
        "<li><strong>Report Prepared By:</strong> Nagasurendra, Data Analyst</li>",
        f"<li><strong>Report Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
        "</ul>",
        "<h2>1. Introduction</h2>",
        "<p>This report consolidates drone survey results for NH-44 (Km 100–150) using multiple YOLO models for detecting road defects and toll gates.</p>",
        "<h2>2. Drone Survey Metadata</h2>",
        "<ul>",
        "<li><strong>Drone Speed:</strong> 5 m/s</li>",
        "<li><strong>Drone Height:</strong> 60 m</li>",
        "<li><strong>Camera Sensor:</strong> RGB, 12 MP</li>",
        "<li><strong>Recording Type:</strong> JPEG, 90° nadir</li>",
        "<li><strong>Image Overlap:</strong> 85%</li>",
        "<li><strong>Flight Pattern:</strong> Single lap, ROW centered</li>",
        "<li><strong>Geotagging:</strong> Enabled</li>",
        "<li><strong>Satellite Lock:</strong> 12 satellites</li>",
        "<li><strong>Terrain Follow Mode:</strong> Enabled</li>",
        "</ul>",
        "<h2>3. Quality Check Results</h2>",
        "<ul>",
        "<li><strong>Resolution:</strong> 1920x1080</li>",
        "<li><strong>Overlap:</strong> 85%</li>",
        "<li><strong>Camera Angle:</strong> 90° nadir</li>",
        "<li><strong>Drone Speed:</strong> ≤ 5 m/s</li>",
        "<li><strong>Geotagging:</strong> 100% compliant</li>",
        "<li><strong>QC Status:</strong> Passed</li>",
        "</ul>",
        "<h2>4. AI/ML Analytics</h2>",
        f"<p><strong>Total Frames Processed:</strong> {frame_count}</p>",
        f"<p><strong>Detection Frames:</strong> {detection_frame_count} ({detection_frame_count/frame_count*100:.1f}%)</p>",
        f"<p><strong>Total Detections:</strong> {metrics['total_detections']}</p>",
        "<p><strong>Breakdown by Model and Type:</strong></p>",
        "<ul>"
    ]

    for item in metrics.get("items", []):
        percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
        report_content.append(f"<li>{item['type']} (Model: {item['model']}): {item['count']} ({percentage:.1f}%)</li>")
    report_content.extend([
        "</ul>",
        f"<p><strong>Processing Time:</strong> {total_time:.1f} seconds</p>",
        f"<p><strong>Average Frame Time:</strong> {sum(frame_times)/len(frame_times):.1f} ms</p>" if frame_times else "<p><strong>Average Frame Time:</strong> N/A</p>",
        f"<p><strong>Average Resize Time:</strong> {sum(resize_times)/len(resize_times):.1f} ms</p>" if resize_times else "<p><strong>Average Resize Time:</strong> N/A</p>",
        f"<p><strong>Average Inference Time:</strong> {sum(inference_times)/len(inference_times):.1f} ms</p>" if inference_times else "<p><strong>Average Inference Time:</strong> N/A</p>",
        f"<p><strong>Average I/O Time:</strong> {sum(io_times)/len(io_times):.1f} ms</p>" if io_times else "<p><strong>Average I/O Time:</strong> N/A</p>",
        f"<p><strong>Timestamp:</strong> {metrics.get('timestamp', 'N/A')}</p>",
        "<p><strong>Summary:</strong> Road defects and toll gates detected across multiple models.</p>",
        "<h2>5. Output File Structure</h2>",
        "<p>ZIP file contains:</p>",
        "<ul>",
        f"<li><code>drone_analysis_report_{timestamp}.html</code>: This report</li>",
        "<li><code>outputs/processed_output.mp4</code>: Processed video with annotations</li>",
        f"<li><code>outputs/chart_{timestamp}.png</code>: Detection trend chart</li>",
        f"<li><code>outputs/map_{timestamp}.png</code>: Issue locations map</li>",
        "<li><code>captured_frames/detected_<frame>.jpg</code>: Geotagged images for detected issues</li>",
        "<li><code>flight_logs/flight_log_<frame>.csv</code>: Flight logs matching image frames</li>",
        "</ul>",
        "<p><strong>Note:</strong> Images and logs share frame numbers (e.g., <code>detected_000001.jpg</code> corresponds to <code>flight_log_000001.csv</code>).</p>",
        "<h2>6. Geotagged Images</h2>",
        f"<p><strong>Total Images:</strong> {len(detected_issues)}</p>",
        f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></p>",
        "<table>",
        "<tr><th>Frame</th><th>Issue Type</th><th>Model</th><th>GPS (Lat, Lon)</th><th>Timestamp</th><th>Confidence</th><th>Image Path</th></tr>"
    ])

    for detection in all_detections[:100]:
        report_content.append(
            f"<tr><td>{detection['frame']:06d}</td><td>{detection['label']}</td><td>{detection['model']}</td><td>({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f})</td><td>{detection['timestamp']}</td><td>{detection['conf']:.1f}</td><td>captured_frames/{os.path.basename(detection['path'])}</td></tr>"
        )

    report_content.extend([
        "</table>",
        "<h2>7. Flight Logs</h2>",
        f"<p><strong>Total Logs:</strong> {len(detected_issues)}</p>",
        f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></p>",
        "<table>",
        "<tr><th>Frame</th><th>Timestamp</th><th>Latitude</th><th>Longitude</th><th>Speed (m/s)</th><th>Satellites</th><th>Altitude (m)</th><th>Log Path</th></tr>"
    ])

    for detection in all_detections[:100]:
        log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
        report_content.append(
            f"<tr><td>{detection['frame']:06d}</td><td>{detection['timestamp']}</td><td>{detection['gps'][0]:.6f}</td><td>{detection['gps'][1]:.6f}</td><td>5.0</td><td>12</td><td>60</td><td>{log_path}</td></tr>"
        )

    report_content.extend([
        "</table>",
        "<h2>8. Processed Video</h2>",
        f"<p><strong>Path:</strong> outputs/processed_output.mp4</p>",
        f"<p><strong>Frames:</strong> {output_frames}</p>",
        f"<p><strong>FPS:</strong> {output_fps:.1f}</p>",
        f"<p><strong>Duration:</strong> {output_duration:.1f} seconds</p>",
        "<h2>9. Visualizations</h2>",
        f"<p><strong>Detection Trend Chart:</strong> outputs/chart_{timestamp}.png</p>",
        f"<p><strong>Issue Locations Map:</strong> outputs/map_{timestamp}.png</p>",
        "<h2>10. Processing Timestamps</h2>",
        f"<p><strong>Total Processing Time:</strong> {total_time:.1f} seconds</p>",
        "<p><strong>Log Entries (Last 10):</strong></p>",
        "<ul>"
    ])

    for entry in log_entries[-10:]:
        report_content.append(f"<li>{entry}</li>")

    report_content.extend([
        "</ul>",
        "<h2>11. Stakeholder Validation</h2>",
        "<ul>",
        "<li><strong>AE/IE Comments:</strong> [Pending]</li>",
        "<li><strong>PD/RO Comments:</strong> [Pending]</li>",
        "</ul>",
        "<h2>12. Recommendations</h2>",
        "<ul>",
        "<li>Repair potholes in high-traffic areas.</li>",
        "<li>Seal cracks to prevent further degradation.</li>",
        "<li>Inspect detected toll gates for compliance.</li>",
        "</ul>",
        "<h2>13. Data Lake References</h2>",
        "<ul>",
        f"<li><strong>Images:</strong> <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></li>",
        f"<li><strong>Flight Logs:</strong> <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></li>",
        f"<li><strong>Video:</strong> <code>/project_xyz/videos/processed_output_{timestamp}.mp4</code></li>",
        f"<li><strong>DAMS Dashboard:</strong> <code>/project_xyz/dams/{datetime.now().strftime('%Y%m%d')}</code></li>",
        "</ul>",
        "<h2>14. Captured Images</h2>",
        "<p>Below are the embedded images from the captured frames directory showing detected issues:</p>",
        ""
    ])

    for image_path in detected_issues:
        if os.path.exists(image_path):
            image_name = os.path.basename(image_path)
            try:
                with open(image_path, "rb") as image_file:
                    base64_string = base64.b64encode(image_file.read()).decode('utf-8')
                report_content.append(f"<img src='data:image/jpeg;base64,{base64_string}' alt='{image_name}'>")
                report_content.append(f"<p class='caption'>Image: {image_name}</p>")
                report_content.append("")
            except Exception as e:
                log_entries.append(f"Error: Failed to encode image {image_name} to base64: {str(e)}")

    report_content.extend([
        "</body>",
        "</html>"
    ])

    try:
        with open(report_path, 'w') as f:
            f.write("\n".join(report_content))
        log_entries.append(f"Report saved at: {report_path}")
        return report_path
    except Exception as e:
        log_entries.append(f"Error: Failed to save report: {str(e)}")
        return ""

def process_video(video, selected_model, resize_width=1920, resize_height=1080, frame_skip=1):
    global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
    frame_count = 0
    detected_counts.clear()
    detected_issues.clear()
    gps_coordinates.clear()
    log_entries.clear()
    last_metrics = {}

    if video is None:
        log_entries.append("Error: No video uploaded")
        return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None

    log_entries.append("Starting video processing...")
    start_time = time.time()
    cap = cv2.VideoCapture(video)
    if not cap.isOpened():
        log_entries.append("Error: Could not open video file")
        return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    input_resolution = frame_width * frame_height
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    log_entries.append(f"Input video: {frame_width}x{frame_height} at {fps} FPS, {total_frames} frames")

    out_width, out_height = resize_width, resize_height
    output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'XVID'), fps, (out_width, out_height))
    if not out.isOpened():
        log_entries.append("Error: Failed to initialize video writer")
        cap.release()
        return None, json.dumps({"error": "Video writer failed"}, indent=2), "\n".join(log_entries), [], None, None, None

    processed_frames = 0
    all_detections = []
    frame_times = []
    inference_times = []
    resize_times = []
    io_times = []
    detection_frame_count = 0
    output_frame_count = 0
    last_annotated_frame = None
    disk_space_threshold = 1024 * 1024 * 1024

    # Select models based on dropdown
    use_models = models if selected_model == "All" else {selected_model: models[selected_model]}

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        if frame_count % frame_skip != 0:
            continue
        processed_frames += 1
        frame_start = time.time()

        if os.statvfs(os.path.dirname(output_path)).f_frsize * os.statvfs(os.path.dirname(output_path)).f_bavail < disk_space_threshold:
            log_entries.append("Error: Insufficient disk space")
            break

        frame = cv2.resize(frame, (out_width, out_height))
        resize_times.append((time.time() - frame_start) * 1000)

        # Comment out quality check to process all frames
        # if not check_image_quality(frame, input_resolution):
        #     continue

        annotated_frame = frame.copy()
        frame_detections = []
        inference_start = time.time()

        for model_name, model in use_models.items():
            results = model(annotated_frame, verbose=False, conf=0.25, iou=0.45)
            for result in results:
                for box in result.boxes:
                    x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
                    class_id = int(box.cls[0])
                    label = f"{model.names[class_id]} - {box.conf[0]:.2f}"
                    color = model_colors.get(model_name, (0, 255, 255))
                    cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color, 2)
                    cv2.putText(annotated_frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)

                    detection_data = {
                        "label": model.names[class_id],
                        "model": model_name,
                        "box": [x1, y1, x2, y2],
                        "conf": float(box.conf[0]),
                        "gps": [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)],
                        "timestamp": f"{int(frame_count / fps // 60):02d}:{int(frame_count / fps % 60):02d}",
                        "frame": frame_count,
                        "path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
                    }
                    frame_detections.append(detection_data)

        inference_times.append((time.time() - inference_start) * 1000)

        frame_timestamp = frame_count / fps if fps > 0 else 0
        timestamp_str = f"{int(frame_timestamp // 60):02d}:{int(frame_timestamp % 60):02d}"
        gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
        gps_coordinates.append(gps_coord)

        io_start = time.time()
        if frame_detections:
            detection_frame_count += 1
            if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
                captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
                if cv2.imwrite(captured_frame_path, annotated_frame):
                    if write_geotag(captured_frame_path, gps_coord):
                        detected_issues.append(captured_frame_path)
                        if len(detected_issues) > MAX_IMAGES:
                            os.remove(detected_issues.pop(0))
                    else:
                        log_entries.append(f"Frame {frame_count}: Geotagging failed")
                else:
                    log_entries.append(f"Error: Failed to save frame at {captured_frame_path}")
                write_flight_log(frame_count, gps_coord, timestamp_str)

        io_times.append((time.time() - io_start) * 1000)

        out.write(annotated_frame)
        output_frame_count += 1
        last_annotated_frame = annotated_frame
        if frame_skip > 1:
            for _ in range(frame_skip - 1):
                out.write(annotated_frame)
                output_frame_count += 1

        detected_counts.append(len(frame_detections))
        all_detections.extend(frame_detections)
        for detection in frame_detections:
            log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {detection['label']} (Model: {detection['model']}) with confidence {detection['conf']:.2f}")

        frame_times.append((time.time() - frame_start) * 1000)
        if len(log_entries) > 50:
            log_entries.pop(0)

        if time.time() - start_time > 600:
            log_entries.append("Error: Processing timeout after 600 seconds")
            break

    while output_frame_count < total_frames and last_annotated_frame is not None:
        out.write(last_annotated_frame)
        output_frame_count += 1

    last_metrics = update_metrics(all_detections)

    out.release()
    cap.release()

    cap = cv2.VideoCapture(output_path)
    if not cap.isOpened():
        log_entries.append("Error: Failed to open output video for verification")
        output_path = None
    else:
        output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        output_fps = cap.get(cv2.CAP_PROP_FPS)
        output_duration = output_frames / output_fps if output_fps > 0 else 0
        cap.release()
        log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")

    total_time = time.time() - start_time
    log_entries.append(f"Processing completed in {total_time:.2f} seconds")

    chart_path = generate_line_chart()
    map_path = generate_map(gps_coordinates[-5:], all_detections)
    report_path = generate_report(
        last_metrics,
        detected_issues,
        gps_coordinates,
        all_detections,
        frame_count,
        total_time,
        output_frames,
        output_fps,
        output_duration,
        detection_frame_count,
        chart_path,
        map_path,
        frame_times,
        resize_times,
        inference_times,
        io_times
    )
    output_zip_path = zip_all_outputs(report_path, output_path, chart_path, map_path)

    return (
        output_path,
        json.dumps(last_metrics, indent=2),
        "\n".join(log_entries[-10:]),
        detected_issues,
        chart_path,
        map_path,
        output_zip_path
    )

with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
    gr.Markdown("# NHAI Road Defect Detection Dashboard")
    with gr.Row():
        with gr.Column(scale=3):
            video_input = gr.Video(label="Upload Video")
            model_dropdown = gr.Dropdown(
                choices=["All"] + list(model_paths.keys()),
                label="Select YOLO Model(s)",
                value="All"
            )
            width_slider = gr.Slider(320, 1920, value=1920, label="Output Width", step=1)
            height_slider = gr.Slider(240, 1080, value=1080, label="Output Height", step=1)
            skip_slider = gr.Slider(1, 20, value=1, label="Frame Skip", step=1)
            process_btn = gr.Button("Process Video", variant="primary")
        with gr.Column(scale=1):
            metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
    with gr.Row():
        video_output = gr.Video(label="Processed Video")
        issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
    with gr.Row():
        chart_output = gr.Image(label="Detection Trend")
        map_output = gr.Image(label="Issue Locations Map")
    with gr.Row():
        logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
    with gr.Row():
        gr.Markdown("## Download Results")
    with gr.Row():
        output_zip_download = gr.File(label="Download All Outputs (ZIP)")

    process_btn.click(
        fn=process_video,
        inputs=[video_input, model_dropdown, width_slider, height_slider, skip_slider],
        outputs=[
            video_output,
            metrics_output,
            logs_output,
            issue_gallery,
            chart_output,
            map_output,
            output_zip_download
        ]
    )

if __name__ == "__main__":
    iface.launch()