Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,24 +3,29 @@ import torch
|
|
3 |
import cv2
|
4 |
from ultralytics import YOLO
|
5 |
|
6 |
-
#
|
7 |
def safe_load_yolo_model(path):
|
8 |
-
# Add necessary safe globals to allow the detection model class during loading
|
9 |
torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
|
10 |
return YOLO(path)
|
11 |
|
12 |
-
# Load
|
13 |
model_yolo11 = safe_load_yolo_model('./data/yolo11n.pt')
|
14 |
model_best = safe_load_yolo_model('./data/best.pt')
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def process_video(video):
|
17 |
-
#
|
18 |
cap = cv2.VideoCapture(video)
|
19 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
20 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
21 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
22 |
|
23 |
-
# Create
|
24 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4
|
25 |
out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height))
|
26 |
|
@@ -29,27 +34,30 @@ def process_video(video):
|
|
29 |
if not ret:
|
30 |
break
|
31 |
|
32 |
-
#
|
33 |
results_yolo11 = model_yolo11(frame)
|
|
|
34 |
results_best = model_best(frame)
|
35 |
-
|
36 |
-
#
|
37 |
-
# For simplicity, we will overlay bounding boxes and labels from both models
|
38 |
for result in results_yolo11:
|
39 |
boxes = result.boxes
|
40 |
for box in boxes:
|
41 |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
|
|
|
|
42 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
43 |
-
label
|
44 |
-
cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
45 |
|
|
|
46 |
for result in results_best:
|
47 |
boxes = result.boxes
|
48 |
for box in boxes:
|
49 |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
|
|
|
|
50 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
51 |
-
label
|
52 |
-
cv2.putText(frame, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
53 |
|
54 |
# Write the processed frame to the output video
|
55 |
out.write(frame)
|
|
|
3 |
import cv2
|
4 |
from ultralytics import YOLO
|
5 |
|
6 |
+
# Load YOLO models
|
7 |
def safe_load_yolo_model(path):
|
|
|
8 |
torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
|
9 |
return YOLO(path)
|
10 |
|
11 |
+
# Load the models
|
12 |
model_yolo11 = safe_load_yolo_model('./data/yolo11n.pt')
|
13 |
model_best = safe_load_yolo_model('./data/best.pt')
|
14 |
|
15 |
+
# Class names for YOLO model (replace with actual class names used in your YOLO model)
|
16 |
+
yolo_classes = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe']
|
17 |
+
|
18 |
+
# Class names for best.pt model (assumed classes for crack and pothole)
|
19 |
+
best_classes = ['Crack', 'Pothole']
|
20 |
+
|
21 |
def process_video(video):
|
22 |
+
# Open the video using OpenCV
|
23 |
cap = cv2.VideoCapture(video)
|
24 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
25 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
26 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
27 |
|
28 |
+
# Create VideoWriter to save output video
|
29 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4
|
30 |
out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height))
|
31 |
|
|
|
34 |
if not ret:
|
35 |
break
|
36 |
|
37 |
+
# Detect with YOLOv11 (general object detection model)
|
38 |
results_yolo11 = model_yolo11(frame)
|
39 |
+
# Detect with best.pt (specialized model for cracks and potholes)
|
40 |
results_best = model_best(frame)
|
41 |
+
|
42 |
+
# Draw bounding boxes and labels for YOLOv11 (General Object Detection)
|
|
|
43 |
for result in results_yolo11:
|
44 |
boxes = result.boxes
|
45 |
for box in boxes:
|
46 |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
47 |
+
class_id = int(box.cls[0]) # Class index for YOLO
|
48 |
+
label = f"YOLO: {yolo_classes[class_id]} - {box.conf[0]:.2f}" # Map class_id to class name
|
49 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
50 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
|
|
51 |
|
52 |
+
# Draw bounding boxes and labels for best.pt (Crack and Pothole detection)
|
53 |
for result in results_best:
|
54 |
boxes = result.boxes
|
55 |
for box in boxes:
|
56 |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
57 |
+
class_id = int(box.cls[0]) # Class index for best.pt
|
58 |
+
label = f"Best: {best_classes[class_id]} - {box.conf[0]:.2f}" # Map class_id to specific labels
|
59 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
60 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 0, 0), 2)
|
|
|
61 |
|
62 |
# Write the processed frame to the output video
|
63 |
out.write(frame)
|